Controlling the balance of endothelial cells (ECs) and smooth muscle cells (SMCs) in blood vessels is critically important to minimize the risk associated with vascular implants. Extracellular matrix (ECM) plays a key role in controlling the cellular balance, suggesting a promising source of cell-selective peptides. To obtain EC- or SMC-selective peptides, we start by highlighting sequence differences found among ECM molecules as enriched targets for cell-selective peptides. We explored the EC- or SMC-selective performance of tripeptides that are specifically enriched only in collagen type IV, but not in types I, II, III, and V. Collagen type IV was chosen since it is the major ECM in the basement membrane of blood vessels, which separates ECs and SMCs. Among 114 collagen type IV-derived tripeptides pre-screened from in silico analysis, 22 peptides (19%) were found to promote cell-selective adhesion, as determined by peptide array. One of the best performing EC-selective peptides (Cys-Ala-Gly (CAG)) was mixed into an electrospun fine-fiber, a vascular graft material, for practical application. Compared to unmodified fiber, the CAG containing fiber surface was found to enhance adhesion of ECs (+190%) while limiting SMCs (-20%). These results are not only consistent with the hypothesis of ECM as a source of cell selective peptides, but also suggest a new genre of EC- or SMC-selective peptides for tissue engineering applications. Collectively, these findings favorably support the screening approach used to discover new peptides for these purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.24459 | DOI Listing |
Comput Biol Chem
December 2024
Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Endocrinology, Odense University Hospital, Odense, Denmark.
Osteogenesis imperfecta (OI) is a group of rare genetic disorders most commonly caused by reduced amount of biologically normal collagen type I, a structural component of the gastrointestinal tract and abdominal wall. The risk of gastrointestinal (GI) disease in individuals with OI is not well understood, despite GI complaints being frequently reported by the OI population. To investigate the risk of GI diseases in individuals with OI.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
Osteogenesis imperfecta (OI) is an inheritable skeletal disorder characterized by bone fragility often caused by pathogenic variants in the COL1A1 gene. Current OI mouse models with a glycine substitution in Col1a1 exhibit excessive severity, thereby limiting long-term pathophysiological analysis and drug effect assessments. To address this limitation, we constructed a novel OI mouse model mimicking a patient with OI type III.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of North Dakota, Grand Forks, ND, USA.
Background: Alzheimer's disease (AD) is an age-related neurodegenerative disorder affecting nearly 50 million individuals worldwide. Besides aging, various comorbidities can increase the risk of AD, such as asthma. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!