CO(2) in large-scale and high-density CHO cell perfusion culture.

Cytotechnology

Process Development Department, Chiron Corporation, 4560 Horton St., 94608, Emeryville, CA, U.S.A..

Published: January 1996

Productivity in a CHO perfusion culture reactor was maximized when pCO(2) was maintained in the range of 30-76 mm Hg. Higher levels of pCO(2) (> 150 mm Hg) resulted in CHO cell growth inhibition and dramatic reduction in productivity. We measured the oxygen utilization and CO(2) production rates for CHO cells in perfusion culture at 5.55×10(-17) mol cell(-1) sec(-1) and 5.36×10(-17) mol cell(-1) sec(-1) respectively. A simple method to directly measure the mass transfer coefficients for oxygen and carbon dioxide was also developed. For a 500 L bioreactor using pure oxygen sparge at 0.002 VVM from a microporous frit sparger, the overall apparent transfer rates (k(L)a+k(A)A) for oxygen and carbon dioxide were 0.07264 min(-1) and 0.002962 min(-1) respectively. Thus, while a very low flow rate of pure oxygen microbubbles would be adequate to meet oxygen supply requirements for up to 2.1×10(7) cells/mL, the low CO(2) removal efficiency would limit culture density to only 2.4×10(6) cells/mL. An additional model was developed to predict the effect of bubble size on oxygen and CO(2) transfer rates. If pure oxygen is used in both the headspace and sparge, then the sparging rate can be minimized by the use of bubbles in the size range of 2-3 mm. For bubbles in this size range, the ratio of oxygen supply to carbon dioxide removal rates is matched to the ratio of metabolic oxygen utilization and carbon dioxide generation rates. Using this strategy in the 500 L reactor, we predict that dissolved oxygen and CO(2) levels can be maintained in the range to support maximum productivity (40% DO, 76 mm Hg pCO(2)) for a culture at 10(7) cells/mL, and with a minimum sparge rate of 0.006 vessel volumes per minute.A = volumetric agitated gas-liquid interfacial area at the top of the liquid, 1/mB = cell broth bleeding rate from the vessel, L/minCER = carbon dioxide evolution rate in the bioreactor, mol/min[CO(2)] = dissolved CO(2) concentration in liquid, M[CO(2)](*) = CO(2) concentration in equilibrium with sparger gas, M[CO(2)](**) = CO(2) concentration in equilibrium with headspace gas, MCO(2)(1) = dissolved carbon dioxide molecule in water[C(T)] = total carbonic species concentration in bioreactor medium, M[C(T)](F) = total carbonic species concentration in feed medium, MD = bioreactor diameter, mD(I) = impeller diameter, mD(b) = the initial delivered bubble diameter, mF = fresh medium feeding rate, L/minH(L) = liquid height in the vessel, mk(A) = carbon dioxide transfer coefficient at liquid surface, m/mink (infA) (supO) = oxygen transfer coefficient at liquid surface, m/min.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00353925DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
28
perfusion culture
12
oxygen
12
pure oxygen
12
co2 concentration
12
co2
8
cho cell
8
maintained range
8
oxygen utilization
8
mol cell-1
8

Similar Publications

To efficiently capture, activate, and transform small molecules, metalloenzymes have evolved to integrate a well-organized pocket around the active metal center. Within this cavity, second coordination sphere functionalities are precisely positioned to optimize the rate, selectivity, and energy cost of catalytic reactions. Inspired by this strategy, an artificial distal pocket defined by a preorganized 3D strap is introduced on an iron-porphyrin catalyst (sc-Fe) for the CO-to-CO electrocatalytic reduction.

View Article and Find Full Text PDF

Objective: To discover the potential association between diminished intraoperative average SctO levels and postoperative neurodevelopmental delays among patients after pediatric living-donor liver transplantation.

Study Design: Patients undergoing living-donor liver transplantation were recruited for this trial. The neurodevelopment status of patients was assessed using the Ages Stages Questionnaires.

View Article and Find Full Text PDF

Objectives: This systematic review aimed to review existing evidence to evaluate the effects of physical cardiac rehabilitation on cardio-pulmonary outcomes in the patients with hypertrophic cardiomyopathy (HCM).

Methods: We conducted a systematic search of the databases PubMed, Web of Science, Embase, Scopus, and Google Scholar. The initial search led to 1222 citations after removing duplicate results.

View Article and Find Full Text PDF

Enhanced hydrogel loading of quercetin-loaded hollow mesoporous cerium dioxide nanoparticles for skin flap survival.

Mater Today Bio

February 2025

Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.

Flap techniques are indispensable in modern surgery because of their role in repairing tissue defects and restoring function. Ischemia-reperfusion and oxidative stress-induced injuries are the main causes of flap failure. Oxidative stress exacerbates cell damage through the accumulation of reactive oxygen species (ROS), thereby affecting flap function and survival.

View Article and Find Full Text PDF

In response to the growing demand of reducing greenhouse gas (GHG) emissions within maritime sector, Onboard Carbon Capture and Storage (OCCS) technologies provide as key solutions for tackling carbon dioxide (CO) emissions from ships. This review paper offers a comprehensive overview of recent developments, challenges, and prospects of Carbon Capture and Storage (CCS) technologies considering specifically for onboard ship applications. Various Carbon Capture (CC) methods, ranging from post-combustion and pre-combustion capture to oxy-fuel combustion, are critically analysed concerning their operating principles, advantages, disadvantages and applicability in the maritime context.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!