Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Renal transplantation is the optimal form of renal replacement therapy (RRT) for the majority of patients. Both short- and long-term graft rejection are well recognized complications following transplantation, and optimal immunosuppression is often difficult to achieve. Pharmacodynamics (PD) and pharmacokinetics (PK) are hard to predict in all patients, and best practice involves the use of standard dosing based on weight and therapeutic drug monitoring (TDM). Pharmacogenetics (PG) is the use of genetic screening to predict metabolic responses to different immunosuppressive drugs and enables more accurate predictions of PD and PK to be made. This has the potential to improve graft outcome by reducing both short- and long-term graft rejection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407359 | PMC |
http://dx.doi.org/10.1007/s00467-012-2105-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!