This article is devoted to the exploration of the benefits of a new ultrafast confocal pump-probe technique, able to study the photophysics of different structured materials with nanoscale resolution. This tool offers many advantages over standard stationary microscopy techniques because it directly interrogates excited state dynamics in molecules, providing access to both radiative and non-radiative deactivation processes at a local scale. In this paper we present a few different examples of its application to organic semiconductor systems. The first two are focussed on the study of the photophysics of phase-separated polymer blends: (i) a blue-emitting polyfluorene (PFO) in an inert matrix of PMMA and (ii) an electron donor polythiophene (P3HT) mixed with an electron acceptor fullerene derivative (PCBM). The experimental results on these samples demonstrate the capability of the technique to unveil peculiar interfacial dynamics at the border region between phase-segregated domains, which would be otherwise averaged out using conventional pump-probe spectroscopy. The third example is the study of the photophysics of isolated mesoscopic crystals of the PCBM molecule. Our ultrafast microscope could evidence the presence of two distinctive regions within the crystals. In particular, we could pinpoint for the first time areas within the crystals showing photobleaching/stimulated emission signals from a charge-transfer state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2nr11896c | DOI Listing |
Dalton Trans
January 2025
Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.
Hybrid coordination polimers based on AgX (with X = Cl, Br) and 2-, 3-, 4-picolylamine ligands, obtained by means of solvent-free methods, show peculiar luminescence properties that are strongly influenced by their structural motif, which in turn is defined by the adopted isomer of the ligand. A comprehensive study, combining photophysical methods and DFT calculations, allowed to rationalize the emissive behaviour of such hybrid coordination polymers in relation to their crystal structures and electronic properties. By means of luminescence measurements at variable temperatures, the nature of the emissive excited states and their deactivation dynamics was interpreted, revealing XMLCT transitions in the [(AgX)(2-pica)] compounds, a TADF behaviour in the case of 3-pica derivatives, and a dual emission at room temperature for the [(AgX)(4-pica)] family.
View Article and Find Full Text PDFChem Asian J
January 2025
Birla Institute of Technology & Science Pilani - Hyderabad Campus, Chemistry, INDIA.
Hot-exciton materials, among all kinds of organic light-emitting diode (OLED) emitters, have better exciton utilization efficiency and efficiency roll-off, making them possible for their practical applications. We studied the photophysical properties of a few hot-exciton molecules based on an anthracene core unit to efficiently harvest all triplet excitons to the lowest excited singlet state. The conversion of triplet exciton to singlet exciton utilizing hRISC can be enhanced due to the 1ππ*←3nπ* transition channel.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain. Electronic address:
7,7'-Diazaisoindigos are π-conjugated compounds but with poor luminescence properties. Their poor luminescence is generally attributed to the twisting around the central C-C bond in the excited state which favors non-radiative decay. We have found an unusual high fluorescence quantum yield (Φ ≈ 15 %) in a N,N‑Octyl-7,7'-diazaisoindigo derivative incorporating two triphenylamine (TPA) subunits at 5,5'-positions (called compound 12).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Instituto Politécnico Nacional ESIQIE, Mexico City 07700, Mexico.
The synthesis of ethylamine-based perovskites has emerged to attempt to replace the lead in lead-based perovskites for the alkaline earth elements barium and strontium, introducing chloride halide to prepare the perovskites in solar cell technology. X-ray diffraction studies were conducted, and EXPO2014 software was utilized to resolve the structure. Chemical characterization was performed using Fourier transform infrared spectroscopy, photophysical properties were analyzed through ultraviolet-visible spectroscopy, and photoluminescence properties were determined to confirm the perovskite characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!