Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-012-0556-4 | DOI Listing |
Arthritis Rheumatol
January 2025
Medicine & Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE.
Objective: Determine whether pollutants such as fire smoke-related particulate matter smaller than 2.5 microns (PM) are associated with incident rheumatoid arthritis (RA) and RA-associated interstitial lung disease (RA-ILD).
Methods: This case-control study used Veterans Affairs data 10/1/2009-12/31/2018.
Environ Pollut
January 2025
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
With the continuous intensification of global warming, the reduction and ultimate phase-out of coal combustion is an inevitable trend in the future global energy transformation. This study comprehensively analyzed the impact of phasing out coal combustion on global emissions and concentrations of air pollutants, radiative fluxes, meteorology and climate using Community Earth System Model 2 (CESM2). The results indicate that after the global phase-out of coal combustion, there is a marked decrease in the concentrations of sulfur dioxide (SO), nitrogen oxides (NO) and fine particulate matter (PM), with some regions experiencing a reduction of exceeding 50%.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, PR China. Electronic address:
The efficiency of graphitic carbon nitride (g-CN) in photocatalytic reduction of carbon dioxide (CO) is inhibited by the constrained CO chemisorption, insufficient light absorption and quick charge recombination. To address these problems, we successfully synthesized g-CN/AgInS (CN/AgInS) heterostructured photocatalytic materials via an electrostatic self-assembly method. An intimate phase contact between CN and AgInS is formed, paving the way for the charge transfer and redistribution near the interface of the CN/AgInS heterostructures.
View Article and Find Full Text PDFPLoS One
January 2025
Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
With the growing severity of air pollution, monitoring harmful gases that pose risks to both human health and the ecological environment has become a focal point of research. Titanium dioxide (TiO) demonstrates significant potential for application in SO gas detection. However, the performance of pure TiO is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!