Organelles in the endocytic pathway interact and communicate through the crucial mechanisms of fusion and fission. However, any specific link between fusion and fission has not yet been determined. To study the endosomal interactions with high spatial and temporal resolution, we enlarged the endosomes by two mechanistically different methods: by expression of the MHC-class-II-associated chaperone invariant chain (Ii; or CD74) or Rab5, both of which increased the fusion rate of early endosomes and resulted in enlarged endosomes. Fast homotypic fusions were studied, and immediately after the fusion a highly active and specific tubule formation and fission was observed. These explosive tubule formations following fusion seemed to be a direct effect of fusion. The tubule formations were dependent on microtubule interactions, and specifically controlled by Kif16b and dynein. Our results show that fusion of endosomes is a rapid process that destabilizes the membrane and instantly induces molecular-motor-driven tubule formation and fission.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.092569DOI Listing

Publication Analysis

Top Keywords

tubule formation
12
formation fission
12
fusion
8
early endosomes
8
induces molecular-motor-driven
8
molecular-motor-driven tubule
8
fusion fission
8
enlarged endosomes
8
tubule formations
8
endosomes
5

Similar Publications

Background: The pathogenesis of acute kidney injury (AKI) is not fully understood. Tax1-binding protein 1 (TAX1BP1) modulates inflammation and apoptosis through the NF-kB signaling pathway, however, its specific role in ischemic AKI remains unclear.

Methods: We injected a TAX1BP1 overexpression plasmid into the tail vein of male C57BL/6 mice, followed by clamping the bilateral renal arteries to induce AKI.

View Article and Find Full Text PDF

Preeclampsia (PE) is a prevalent and severe pregnancy complication that significantly impacts maternal and perinatal health. Epidemiological studies and animal experiments have demonstrated that PE adversely affects the cardiovascular and nervous systems of offspring, increasing their risk of hypertension and renal pathology. However, the mechanisms underlying this increased risk remain unclear.

View Article and Find Full Text PDF

[Aggressive mucinous tubular and spindle cell carcinoma of the kidney: a clinicopathological and genetic analysis of four cases].

Zhonghua Bing Li Xue Za Zhi

January 2025

Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing100191, China.

To understand the clinicopathological and molecular genetic characteristics of aggressive renal mucinous tubular and spindle cell carcinoma (MTSCC). The clinical features, histology, immunophenotype, molecular characteristics and prognosis of 4 cases of metastatic/recurrent renal MTSCC that were submitted to the Peking University Third Hospital (2 cases), Institute of Urology, Peking University (one case) and Zhejiang Provincial People's Hospital (one case) from 2015 to 2020 were retrospectively reviewed and analyzed. Among the four patients, two were male and two were female.

View Article and Find Full Text PDF

To investigate the clinicopathological characteristics, immunophenotypes, diagnostic criteria and differential diagnosis of atrophic kidney-like lesion (AKLL). Three cases of AKLL were collected from April 2021 to October 2023 at the Xiangya Hospital of Central South University, Changsha, Zhejiang Provincial People's Hospital, Hangzhou and Ningbo Clinical Pathology Diagnosis Center, Ningbo, China. The clinical, morphological, and immunohistochemical characteristics were analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!