In sensory circuits of the brain, developmental changes in the expression and modulation of voltage-gated ion channels are a common occurrence, but such changes are often difficult to assign to clear functional roles. We have explored this issue in the binaural neurons of the medial superior olive (MSO), whose temporal precision in detecting the coincidence of binaural inputs dictates the resolution of azimuthal sound localization. We show that in MSO principal neurons of gerbils during the first week of hearing, a hyperpolarization-activated current (I(h)) progressively undergoes a 13-fold increase in maximal conductance, a >10-fold acceleration of kinetics, and, most surprisingly, a 30 mV depolarizing shift in the voltage dependence of activation. This period is associated with an upregulation of the hyperpolarization-activated and cyclic nucleotide-gated (HCN) channel subunits HCN1, HCN2, and HCN4 in the MSO, but only HCN1 and HCN4 were expressed strongly in principal neurons. I(h) recorded in nucleated patches from electrophysiologically mature MSO neurons (>P18) exhibited kinetics and an activation range nearly identical to the I(h) found in whole-cell recordings before hearing onset. These results indicate that the developmental changes in I(h) in MSO neurons can be explained predominantly by modulation from diffusible intracellular factors, and not changes in channel subunit composition. The exceptionally large modulatory changes in I(h), together with refinements in synaptic properties transform the coding strategy from one of summation and integration to the submillisecond coincidence detection known to be required for transmission of sound localization cues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342760 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3882-11.2012 | DOI Listing |
Front Med (Lausanne)
December 2024
Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
Background: The sinoatrial node (SN) generates the heart rate (HR). Its spontaneous activity is regulated by a complex interplay between the modulation by the autonomic nervous system (ANS) and intrinsic factors including ion channels in SN cells. However, the systemic and intrinsic regulatory mechanisms are still poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China.
In vitro experiments performed on dissociated dorsal root ganglion (DRG) neurons suggest the involvement of the hyperpolarization-activated cation current (I) in enhancing neuronal excitability, potentially contributing to neuropathic pain. However, the more confirmative in vivo information about how nerve injury interacts with I is lacking. In this study, I was recorded in vivo using the dynamic single-electrode voltage clamp (dSEVC) technique on L5 DRG neurons of normal rats and those seven days after spinal nerve axotomy (SNA).
View Article and Find Full Text PDFFront Comput Neurosci
November 2024
Department of Physics, University of California, San Diego, La Jolla, CA, United States.
The nucleus HVC within the avian song system produces crystalized instructions which lead to precise, learned vocalization in zebra finches (). This paper proposes a model of the HVC neural network based on the physiological properties of individual HVC neurons, their synaptic interactions calibrated by experimental measurements, as well as the synaptic signal into this region which triggers song production. This neural network model comprises of two major neural populations in this area: neurons projecting to the nucleus RA and interneurons.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
Glucocorticoids are known to influence hippocampal function, but their rapid non-genomic effects on specific neurons in the hippocampal trisynaptic circuit remain underexplored. This study investigated the immediate effects of glucocorticoids on CA1 and CA3 pyramidal neurons, and dentate gyrus (DG) granule neurons in rats using the patch-clamp technique. We found that a 5 min extracellular application of corticosterone significantly reduced action potential firing frequency in CA1 pyramidal neurons, while no effects were observed in CA3 or DG neurons.
View Article and Find Full Text PDFCogn Neurodyn
October 2024
School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, 450046 China.
Conduction delay and failure behaviors of action potentials with a high frequency along nerve fiber are related to the abnormal functions. For instance, upregulation of a hyperpolarization-activated cation current ( ) is identified to reduce the conduction delay to recover the temporal encoding, and downregulation of the current to enhance the conduction failure rate to ease the pain sensation, with the dynamic mechanisms remaining unclear. In the present paper, the dynamic mechanism is obtained in a chain network model with coupling strength ( ) and action potentials induced by periodic stimulations with a period ( ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!