Intestinal epithelial cells can respond to certain bacteria by producing an array of cytokines and chemokines which are associated with host immune responses. Lactobacillus acidophilus NCFM is a characterized probiotic, originally isolated from human feces. This study aimed to test the ability of L. acidophilus NCFM to stimulate cytokine and chemokine production in intestinal epithelial cells and to elucidate the mechanisms involved in their upregulation. In experiments using intestinal epithelial cell lines and mouse models, we observed that L. acidophilus NCFM could rapidly but transiently upregulate a number of effector genes encoding cytokines and chemokines such as interleukin 1α (IL-1α), IL-1β, CCL2, and CCL20 and that cytokines showed lower expression levels with L. acidophilus NCFM treatment than chemokines. Moreover, L. acidophilus NCFM could activate a pathogen-associated molecular pattern receptor, Toll-like receptor 2 (TLR2), in intestinal epithelial cell lines. The phosphorylation of NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) in intestinal epithelial cell lines was also enhanced by L. acidophilus NCFM. Furthermore, inhibitors of NF-κB (pyrrolidine dithiocarbamate [PDTC]) and p38 MAPK (SB203580) significantly reduced cytokine and chemokine production in the intestinal epithelial cell lines stimulated by L. acidophilus NCFM, suggesting that both NF-κB and p38 MAPK signaling pathways were important for the production of cytokines and chemokines induced by L. acidophilus NCFM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318281PMC
http://dx.doi.org/10.1128/CVI.05617-11DOI Listing

Publication Analysis

Top Keywords

acidophilus ncfm
32
intestinal epithelial
28
epithelial cell
16
cell lines
16
cytokine chemokine
12
chemokine production
12
epithelial cells
12
cytokines chemokines
12
lactobacillus acidophilus
8
nf-κb p38
8

Similar Publications

Rheumatoid arthritis (RA) is a systemic, chronic autoimmune disease. Many studies have shown that microorganisms may be an important pathological factor leading to the onset of RA. Some infectious or non-infectious pathogenic microorganisms and their metabolites may be the initiating factors of the early onset of RA.

View Article and Find Full Text PDF

Background: The advent of next generation sequencing technologies has enabled a surge in the number of whole genome sequences in public databases, and our understanding of the composition and evolution of bacterial genomes. Besides model organisms and pathogens, some attention has been dedicated to industrial bacteria, notably members of the Lactobacillaceae family that are commonly studied and formulated as probiotic bacteria. Of particular interest is Lactobacillus acidophilus NCFM, an extensively studied strain that has been widely commercialized for decades and is being used for the delivery of vaccines and therapeutics.

View Article and Find Full Text PDF

This study investigates the dynamics of MRSA de-colonization on HT-29 cell line using effective strategies like probiotics and postbiotics. Exploring novel alternatives to combat infections caused by antibiotic-resistant pathogens is an urgent need. Harnessing the antagonistic properties of live probiotics and their heat-killed preparations (postbiotics) to curb the growth of AMR pathogens represents a promising and essential area of contemporary research.

View Article and Find Full Text PDF

Chitin-glucan (CG) is a new generation of prebiotic. NCFM (NCFM) is a probiotic with the ability to decrease abdominal pain. We evaluate the functional and molecular gastrointestinal responses to a synbiotic administration combining CG and NCFM in a rat model of long-lasting colon hypersensitivity.

View Article and Find Full Text PDF

The interplay between probiotics and host autophagy: mechanisms of action and emerging insights.

Autophagy

October 2024

Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequently followed by an interruption in the inherent operation of the body's cells and organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!