Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies.

Curr Opin Neurol

Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06520, USA.

Published: April 2012

Purpose Of Review: The lack of effective treatments for various neurodegenerative disorders has placed huge burdens on society. We review the current status in applying induced pluripotent stem cell (iPSC) technology for the cellular therapy, drug screening, and in-vitro modeling of neurodegenerative diseases.

Recent Findings: iPSCs are generated from somatic cells by overexpressing four reprogramming factors (Oct4, Sox2, Klf4, and Myc). Like human embryonic stem cells, iPSCs have features of self-renewal and pluripotency, and allow in-vitro disease modeling, drug screening, and cell replacement therapy. Disease-specific iPSCs were derived from patients of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. Neurons differentiated from these iPSCs recapitulated the in-vivo phenotypes, providing platforms for drug screening. In the case of Parkinson's disease, iPSC-derived dopaminergic neurons gave positive therapeutic effect on a rodent Parkinson's disease model as a proof of principle in using iPSCs as sources of cell replacement therapy. Beyond iPSC technology, much effort is being made to generate neurons directly from dermal fibroblasts with neuron-specific transcription factors, which does not require making iPSCs as an intermediate cell type.

Summary: We summarize recent progress in using iPSCs for modeling the progress and treatment of neurodegenerative diseases and provide evidence for future perspectives in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786112PMC
http://dx.doi.org/10.1097/WCO.0b013e3283518226DOI Listing

Publication Analysis

Top Keywords

drug screening
12
parkinson's disease
12
induced pluripotent
8
pluripotent stem
8
stem cells
8
ipsc technology
8
cell replacement
8
replacement therapy
8
neurodegenerative diseases
8
ipscs
7

Similar Publications

Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.

View Article and Find Full Text PDF

Exploring TNFR1: from discovery to targeted therapy development.

J Transl Med

January 2025

School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China.

This review seeks to elucidate the therapeutic potential of tumor necrosis factor receptor 1 (TNFR1) and enhance our comprehension of its role in disease mechanisms. As a critical cell-surface receptor, TNFR1 regulates key signaling pathways, such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK), which are associated with pro-inflammatory responses and cell death. The intricate regulatory mechanisms of TNFR1 signaling and its involvement in various diseases, including inflammatory disorders, infectious diseases, cancer, and metabolic syndromes, have attracted increasing scholarly attention.

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

Streptococcus pyogenes remains one of the top ten causes of mortality from infectious diseases. Children in low-income nations have high carrier rates of Streptococcus pyogenes, which can serve as a source of infections, including simple superficial infections that may lead to invasive and post-streptococcal diseases, particularly among schoolchildren. This study aimed to assess the prevalence of Streptococcus pyogenes, associated factors, and antimicrobial susceptibility profiles among urban and rural public schoolchildren in Gondar City, Northwest Ethiopia.

View Article and Find Full Text PDF

We previously developed human CAR macrophages (CAR-M) and demonstrated redirection of macrophage anti-tumor function leading to tumor control in immunodeficient xenograft models. Here, we develop clinically relevant fully immunocompetent syngeneic models to evaluate the potential for CAR-M to remodel the tumor microenvironment (TME), induce T cell anti-tumor immunity, and sensitize solid tumors to PD1/PDL1 checkpoint inhibition. In vivo, anti-HER2 CAR-M significantly reduce tumor burden, prolong survival, remodel the TME, increase intratumoral T cell and natural killer (NK) cell infiltration, and induce antigen spreading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!