Kinetically stabilized 1,2-dihydrodisilenes were successfully synthesized and isolated by the introduction of sterically protecting bulky aryl groups. These 1,2-dihydrodisilenes exhibit distinct Si═Si double-bond character in both solution and the solid state. The Si-H bonds in these 1,2-dihydrodisilenes exhibit higher s character than those of typical σ(4),λ(4)-hydrosilanes. Moderate heating of these 1,2-dihydrodisilenes in solution resulted in their isomerization to the corresponding trihydrodisilanes, with an intramolecular hydrogen migration as the rate-determining step.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja300694pDOI Listing

Publication Analysis

Top Keywords

kinetically stabilized
8
stabilized 12-dihydrodisilenes
8
12-dihydrodisilenes exhibit
8
12-dihydrodisilenes
5
synthesis kinetically
4
12-dihydrodisilenes kinetically
4
12-dihydrodisilenes synthesized
4
synthesized isolated
4
isolated introduction
4
introduction sterically
4

Similar Publications

Due to health reasons of polyglycerol polyricinoleate (PGPR), there has been a growing interest in reducing it. To address this, this study developed the PGPR/Protein (whey, pea, and chickpea protein isolates) emulsifier combinations. The effects of these combinations on the preparation, structure, physicochemical and in vitro digestive properties of W/O/W microcapsules were evaluated.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Calprotectin's Protein Structure Shields Ni-N(His) Bonds from Competing Agents.

J Phys Chem Lett

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.

View Article and Find Full Text PDF

The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.

View Article and Find Full Text PDF

Bimetallic Sulfides CrVS with Loosely Packed Structure: Exploring the Boundary of Conversion and Intercalation Sodium-Ion Storage Mechanism.

Nano Lett

January 2025

Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal-sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!