Oxytocin (OT) is clinically important in gut motility and constitutively reduces duodenum contractility. Intrinsic primary afferent neurons (IPANs), whose physiological classification is as AH cells, are the 1st neurons of the peristaltic reflex pathway. We set out to investigate if this inhibitory effect is mediated by IPANs and to identify the ion channel(s) and intracellular signal transduction pathway that are involved in this effect. Myenteric neurons were isolated from the longitudinal muscle myenteric plexus (LMMP) preparation of rat duodenum and cultured for 16-24 h before electrophysiological recording in whole cell mode and AH cells identified by their electrophysiological characteristics. The cytoplasmic Ca²⁺ concentration ([Ca²⁺](i) ) of isolated neurons was measured using calcium imaging. The concentration of IP(3) in the LMMP and the OT secreted from the LMMP were measured using ELISA. The oxytocin receptor (OTR) and large-conductance calcium-activated potassium (BK(Ca)) channels, as well as the expression of OT and the IPAN marker calbindin 28 K, on the myenteric plexus neurons were localized using double-immunostaining techniques. We found that administration of OT (10⁻⁷ to 10⁻⁵ M) dose dependently hyperpolarized the resting membrane potential and increased the total outward current. The OTR antagonist atosiban or the BK(Ca) channel blocker iberiotoxin (IbTX) blocked the effects of OT suggesting that the increased outward current resulted from BK(Ca) channel opening. OTR and the BK(Ca) α subunit were co-expressed on a subset of myenteric neurons at the LMMP. NS1619 (10⁻⁵ M, a BK(Ca) channel activator) increased the outward current similar to the effect of OT. OT administration also increased [Ca²⁺](i) and the OT-evoked outward current was significantly attenuated by thapsigargin (10⁻⁶ M) or CdCl₂. The effect of OT on the BK(Ca) current was also blocked by pre-treatment with the IP₃ receptor antagonist 2-APB (10⁻⁴ M) or the PLC inhibitor U73122 (10⁻⁵ M). OT (10⁻⁶ M) also increased the IP₃ concentration within the LMMP. Both of the spontaneous and KCl-induced secretion of OT was enhanced by atosiban. Most of OT-immunoreactive cells are also immunoreactive for calbindin 28 K. In summary, we concluded that OT hyperpolarized myenteric IPANs by activating BK(Ca) channels via the OTR-PLC-IP₃-Ca²⁺ signal pathway. OT might modulate IPANs mediated ENS reflex by an autocrine and negative feedback manner.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2012.07702.xDOI Listing

Publication Analysis

Top Keywords

outward current
16
bkca channels
12
bkca channel
12
intrinsic primary
8
primary afferent
8
afferent neurons
8
bkca
8
myenteric neurons
8
myenteric plexus
8
increased outward
8

Similar Publications

Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

The Impact of Brain Tumors on Emotional and Behavioral Functioning.

Cureus

December 2024

Department of General Surgery, General Medicine Practice Program and Surgery, Batterjee Medical College, Jeddah, SAU.

While the physical manifestations of brain tumors are well-documented, their impact on the emotional and psychological landscape of patients is of equal importance. Patients frequently experience a range of challenges from depression, apathy, and increased aggression to personality changes. The complexity of these changes and their effects on emotional functioning are shaped by tumor characteristics, including location, growth rate, and the corresponding hormonal imbalances.

View Article and Find Full Text PDF

A small cavity for detecting sound-induced flow.

J Acoust Soc Am

January 2025

Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902, USA.

A study is presented of a method for creating an acoustic flow sensor that is generally compatible with current silicon microfabrication processes. An aim of this effort is to obtain a design consisting of a minimal departure from the existing designs employed in mass-produced silicon microphones. Because the primary component in all of these microphones is the cavity behind the pressure-sensing diaphragm, we begin with a study of the acoustic particle velocity within a cavity in a planar surface.

View Article and Find Full Text PDF

Fibrotic cardiomyopathy represents a significant pathological condition characterized by the interaction between cardiomyocytes and fibroblasts in the heart, and it currently lacks an effective cure. In vitro platforms, such as engineered heart tissue (EHT) developed through the co-culturing of cardiomyocytes and fibroblasts, are under investigation to elucidate and manipulate these cellular interactions. We present the first integration of mathematical electrophysiological models that encapsulate fibroblast-cardiomyocyte interactions with experimental EHT studies to identify and modulate the ion channels governing these dynamics.

View Article and Find Full Text PDF

Background: Pimozide is a conventional antipsychotic drug of the diphenylbutylpiperidine class, widely used for treating schizophrenia and delusional disorders and for managing motor and phonic tics in Tourette's syndrome. Pimozide is known to block dopaminergic D2 receptors and various types of voltage-gated ion channels. Among its side effects, dizziness and imbalance are the most frequently observed, which may imply an effect of the drug on the vestibular sensory receptors, the hair cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!