Approximately 30% of patients with breast cancer will develop metastatic breast disease. Metastatic breast cancer is considered an incurable disease, with complete remission rarely achieved after treatment. The goal of treatment for metastatic breast cancer patients is to increase overall survival time and delay disease progression while ameliorating symptoms and improving or maintaining quality of life. Single-agent therapeutic regimens are appropriate for most metastatic breast cancer patients. Patients with the luminal A subtype of breast cancer, which is more indolent in nature and tends to be more sensitive to treatment in general, often respond well to single-agent therapy. Several chemotherapy regimens are recommended for the treatment of metastatic breast cancer. Compared with single-agent regimens, these combination regimens often produce a greater improvement in the rate of objective response as well as a prolongation of progression-free survival. There is little evidence, however, of improvement in overall survival. Combination chemotherapy regimens are often associated with a greater degree of toxicity depending on schedules and doses used. The use of bevacizumab in metastatic breast cancer is currently a topic of controversy. It is hoped that forthcoming trial data will enable the identification of a group of patients, based on tumor biology, who could benefit from bevacizumab-based therapy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

breast cancer
32
metastatic breast
28
breast
9
cancer
8
treatment metastatic
8
cancer patients
8
chemotherapy regimens
8
metastatic
7
treatment
5
patients
5

Similar Publications

Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.

View Article and Find Full Text PDF

Background: We aimed to investigate the clinical and molecular characteristics of different degrees of human epidermal growth factor receptor 2 (HER2) protein expression in HER2-negative breast cancer and the related factors affecting the efficacy of neoadjuvant chemotherapy in HER2-low breast cancer patients.

Methods: The study endpoint was pathological complete remission (PCR). Blood specimens and fresh cancer tissue samples were collected before neoadjuvant chemotherapy for whole-exon sequencing (WES) and RNA sequencing (RNA-seq), and patients were divided into a human epidermal growth factor receptor 2 (HER2)-low group and a HER2-0 group according to their HER2 expression status via bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to evaluate the efficacy of pyrotinib, an orally administered small molecule tyrosine kinase inhibitor, combined with neoadjuvant chemotherapy in treating patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Pyrotinib works by inhibiting the HER2 signaling pathway, thereby preventing tumor cell growth. This single-arm clinical trial aimed to assess the total pathological complete response (tpCR; ypT0/is and ypN0) rate as the primary endpoint.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!