trying... 2235566920130909202110212045-232212011Scientific reportsSci RepThe elementary events underlying force generation in neuronal lamellipodia.15315315310.1038/srep00153We have used optical tweezers to identify the elementary events underlying force generation in neuronal lamellipodia. When an optically trapped bead seals on the lamellipodium membrane, Brownian fluctuations decrease revealing the underlying elementary events. The distribution of bead velocities has long tails with frequent large positive and negative values associated to forward and backward jumps occurring in 0.1-0.2 ms with varying amplitudes up to 20 nm. Jump frequency and amplitude are reduced when actin turnover is slowed down by the addition of 25 nM Jasplakinolide. When myosin II is inhibited by the addition of 20 μM Blebbistatin, jump frequency is reduced but to a lesser extent than by Jasplainolide. These jumps constitute the elementary events underlying force generation.AminLadanLNeurobiology Sector, International School for Advanced Studies (SISSA), IT-34136 Trieste, Italy.ErcoliniErikaEShahapureRajeshRBissonGiacomoGTorreVincentVengJournal ArticleResearch Support, Non-U.S. Gov't20111111EnglandSci Rep1015632882045-23220Actins0Depsipeptides0Heterocyclic Compounds, 4 or More Rings102396-24-7jasplakinolide20WC4J7CQ6blebbistatinEC 3.6.1.-Myosin Type IIIMActinsantagonists & inhibitorsmetabolismAnimalsBiomechanical PhenomenaBiophysical PhenomenaCell Movementdrug effectsphysiologyDepsipeptidespharmacologyGanglia, SpinalcytologyphysiologyHeterocyclic Compounds, 4 or More RingspharmacologyMyosin Type IIantagonists & inhibitorsmetabolismNeuronsdrug effectsphysiologyOptical TweezersPseudopodiadrug effectsphysiologyRatsRats, Wistar20115132011101420122236020122236020122236120111111ppublish22355669PMC324097310.1038/srep00153srep00153Pollard T. D. & Borisy G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).12600310Bray D., Thomas C. & Shaw G. Growth cone formation in cultures of sensory neurons. Proc. Natl. Acad. Sci. U. S. A 75, 5226–5229 (1978).PMC336299283427Huber A. B., Kolodkin A. L., Ginty D. D. & Cloutier J. F. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 (2003).12677003Landis S. C. Neuronal growth cones. Annu. Rev. Physiol. 45, 567–580 (1983).6342524Pollard T. D., Blanchoin L. & Mullins R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).10940259Song H. J. & Poo M. M. The cell biology of neuronal navigation. Nat. Cell Biol. 3, E81–E88 (2001).11231595Gallo G. & Letourneau P. C. Neurotrophins and the dynamic regulation of the neuronal cytoskeleton. J. Neurobiol. 44, 159–173 (2000).10934319Gordon-Weeks P. R. Microtubules and growth cone function. J. Neurobiol. 58, 70–83 (2004).14598371Pollard T. D. & Mooseker M. S. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J. Cell Biol. 88, 654–659 (1981).PMC21127676894301Pollard T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754 (1986).PMC21146203793756Quinlan M. E., Heuser J. E., Kerkhoff E. & Mullins R. D. Drosophila Spire is an actin nucleation factor. Nature 433, 382–388 (2005).15674283Michelot A. et al.. Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr. Biol. 17, 825–833 (2007).17493813Prass M., Jacobson K., Mogilner A. & Radmacher M. Direct measurement of the lamellipodial protrusive force in a migrating cell. J. Cell Biol. 174, 767–772 (2006).PMC206433116966418Bohnet S., Ananthakrishnan R., Mogilner A., Meister J. J. & Verkhovsky A. B. Weak force stalls protrusion at the leading edge of the lamellipodium. Biophys. J. 90, 1810–1820 (2006).PMC136733016326894Bustamante C., Macosko J. C. & Wuite G. J. L. Grabbing the cat by the tail: Manipulating molecules one by one. Nat Rev Mol Cell Biol 1, 130–136 (2000).11253365Neuman K. C. & Block S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).PMC152331316878180Shahapure R. et al.. Force generation in lamellipodia is a probabilistic process with fast growth and retraction events. Biophys. J. 98, 979–988 (2010).PMC284905820303855Bubb M. R., Spector I., Beyer B. B. & Fosen K. M. Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J. Biol. Chem. 275, 5163–5170 (2000).10671562Straight A. F. et al.. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299, 1743–1747 (2003).12637748Kovacs M., Toth J., Hetenyi C., Malnasi-Csizmadia A. & Sellers J. R. Mechanism of blebbistatin inhibition of myosin II. Journal of Biological Chemistry 279, 35557–35563 (2004).15205456Gittes F. & Schmidt C. F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).18084394Simpson K. H., Bowden G., Hook M. & Anvari B. Measurement of adhesive forces between individual Staphylococcus aureus MSCRAMMs and protein-coated surfaces by use of optical tweezers. J. Bacteriol. 185, 2031–2035 (2003).PMC15013112618470Jass J. et al.. Physical properties of Escherichia coli P pili measured by optical tweezers. Biophys. J. 87, 4271–4283 (2004).PMC130493515377509Knoner G. et al.. Mechanics of cellular adhesion to artificial artery templates. Biophys. J. 91, 3085–3096 (2006).PMC157845916861267Helenius J., Heisenberg C. P., Gaub H. E. & Muller D. J. Single-cell force spectroscopy. Journal of Cell Science 121, 1785–1791 (2008).18492792Medeiros N. A., Burnette D. T. & Forscher P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8, 215–226 (2006).16501565Perona P. & Malik J. Scale-Space and Edge-Detection Using Anisotropic Diffusion. Ieee Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990).Weickert J. Applications of nonlinear diffusion in image processing and computer vision. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE 70, 33–50 (2001).Bertero M., Poggio T. A. & Torre V. Ill-Posed Problems in Early Vision. Proc IEEE 76, 869–889 (1988).Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 (2006).Egelman E. H. The Structure of F-Actin. Journal of Muscle Research and Cell Motility 6, 129–151 (1985).3897278Abraham V. C., Krishnamurthi V., Taylor D. L. & Lanni F. The actin-based nanomachine at the leading edge of migrating cells. Biophys. J. 77, 1721–1732 (1999).PMC130045810465781Okreglak V. & Drubin D. G. Loss of Aip1 reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway. J. Cell Biol. 188, 769–777 (2010).PMC284508120231387Koestler S. A. et al.. F- and G-actin concentrations in lamellipodia of moving cells. PLoS. One. 4, e4810 (2009).PMC265210819277198Pantaloni D., Le Clainche C. & Carlier M. F. Mechanism of actin-based motility. Science 292, 1502–1506 (2001).11379633Small J. V., Stradal T., Vignal E. & Rottner K. The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120 (2002).11859023Kuo S. C. & McGrath J. L. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407, 1026–1029 (2000).11069185Cardamone L., Laio A., Torre V., Shahapure R. & DeSimone A. Cytoskeletal actin networks in motile cells are critically self-organized systems synchronized by mechanical interactions. Proceedings of the National Academy of Sciences of the United States of America 108, 13978–13983 (2011).PMC316160421825142Cojoc D. et al.. Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS ONE 2, e1072 (2007).PMC203460517957254trying2... trying... 1728501MCID_676f0860de6e740de60daf4c3971115039694953396925413965165039630747events"event"[All Fields] OR "event's"[All Fields] OR "events"[All Fields]"elementary"[All Fields] AND ("event"[All Fields] OR "event s"[All Fields] OR "events"[All Fields])
trying2... trying... trying2...
The elementary events underlying force generation in neuronal lamellipodia. | LitMetric
We have used optical tweezers to identify the elementary events underlying force generation in neuronal lamellipodia. When an optically trapped bead seals on the lamellipodium membrane, Brownian fluctuations decrease revealing the underlying elementary events. The distribution of bead velocities has long tails with frequent large positive and negative values associated to forward and backward jumps occurring in 0.1-0.2 ms with varying amplitudes up to 20 nm. Jump frequency and amplitude are reduced when actin turnover is slowed down by the addition of 25 nM Jasplakinolide. When myosin II is inhibited by the addition of 20 μM Blebbistatin, jump frequency is reduced but to a lesser extent than by Jasplainolide. These jumps constitute the elementary events underlying force generation.