The invisibility cloak has been a long-standing dream for many researchers over the decades. Using transformation optics, a three-dimensional (3D) object is perceived as having a reduced number of dimensions, making it "undetectable" judging from the scattered field12345. Despite successful experimental demonstration at microwave and optical frequencies6789101112, the spectroscopically important Terahertz (THz) domain13141516 remains unexplored due to difficulties in fabricating cloaking devices that are optically large in all three dimensions. Here, we report the first experimental demonstration of a 3D THz cloaking device fabricated using a scalable Projection Microstereolithography process. The cloak operates at a broad frequency range between 0.3 and 0.6 THz, and is placed over an α-lactose monohydrate absorber with rectangular shape. Characterized using angular-resolved reflection THz time-domain spectroscopy (THz-TDS), the results indicate that the THz invisibility cloak has successfully concealed both the geometrical and spectroscopic signatures of the absorber, making it undetectable to the observer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216565PMC
http://dx.doi.org/10.1038/srep00078DOI Listing

Publication Analysis

Top Keywords

invisibility cloak
12
experimental demonstration
8
hiding realistic
4
realistic object
4
object broadband
4
broadband terahertz
4
terahertz invisibility
4
cloak
4
cloak invisibility
4
cloak long-standing
4

Similar Publications

As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index.

View Article and Find Full Text PDF

FlexSARCloak: A Flexible SAR Cloak Driven by Task-Oriented Learning.

ACS Appl Mater Interfaces

December 2024

Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.

Invisibility─the remarkable ability to render objects imperceptible─has long been a persistent dream of humankind. However, traditional cloaking materials are typically rigid and inflexible, limiting their adaptability to various shapes and requirements. Even when flexibility is achieved, uncontrollable scattering in complex electromagnetic environments continues to pose significant challenges in the design of flexible cloaks.

View Article and Find Full Text PDF
Article Synopsis
  • Manipulating fluid flow is crucial for advances in microfluidics, nanoengineering, and biomedicine, and can help address the global energy crisis by achieving zero-drag hydrodynamics.
  • The research tackles challenges posed by the D'Alembert paradox and unresolved Navier-Stokes equations, introducing a new type of hydrodynamic cloak that operates with isotropic and homogeneous viscosity.
  • Key findings highlight the importance of controlling vorticity for achieving zero-drag and hydrodynamic cloaking, challenging the notion that zero drag is impossible and offering insights beneficial for various technologies, including drug delivery systems.
View Article and Find Full Text PDF
Article Synopsis
  • A moving dielectric medium can influence light's propagation by adding velocity, known as Fresnel drag, but conventional moving dielectric slabs cause boundary reflections and are ineffective near a refractive index of one.
  • This study employs a geometric approach to create a virtual moving geometry that avoids boundary reflections, using a stationary bianisotropic spatiotemporal transformation medium that combines spatial and temporal elements for advanced electromagnetic manipulation.
  • The research leads to applications like a nonreciprocal reflectionless field shifter and an invisibility cloak, providing theoretical advancements in the emerging area of time-varying metamaterials.
View Article and Find Full Text PDF

Light propagation in non-Euclidean geometry has become a hot topic in recent years, while transformation optics theory demonstrates unique advantages in this respect. A notable application of transformation optics in non-Euclidean space is non-Euclidean invisibility cloak which avoids the challenges of negative refraction and anisotropic materials. In this work, we propose another configuration for non-Euclidean invisibility, capable of achieving invisible across a wide spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!