CD74 deficiency ameliorates Pseudomonas aeruginosa-induced ocular infection.

Sci Rep

Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA.

Published: August 2013

Eye trauma and contact lens wear are the main factors that predispose to the development of infectious keratitis. The existing therapies fail to control the inflammation-driven tissue damage that occurs during Pseudomonas aeruginosa infection. Antibiotic treatment reduces bacterial burdens, but better interventions are needed to alleviate tissue damage resulting from local inflammation. We have previously documented that inhibition of macrophage migration inhibitory factor (MIF) reduces the bacterial levels and the inflammatory damage during keratitis. Here, we report that mice deficient for CD74, the putative MIF receptor, developed milder Pseudomonas aeruginosa-induced disease, characterized by decreased proinflammatory mediators and reduced bacterial presence in the cornea. However, topical inhibition of MIF using antibodies applied to the cornea further promoted recovery from disease, suggesting that in addition to MIF-dependent signaling events, MIF-triggered CD74-independent signaling pathways regulate sensitization to P. aeruginosa-induced infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216545PMC
http://dx.doi.org/10.1038/srep00058DOI Listing

Publication Analysis

Top Keywords

pseudomonas aeruginosa-induced
8
tissue damage
8
reduces bacterial
8
cd74 deficiency
4
deficiency ameliorates
4
ameliorates pseudomonas
4
aeruginosa-induced ocular
4
ocular infection
4
infection eye
4
eye trauma
4

Similar Publications

Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.

View Article and Find Full Text PDF

The role of adipose and muscle tissue breakdown on interorgan energy substrate fluxes in a Pseudomonas aeruginosa induced sepsis model in female pigs.

Physiol Rep

January 2025

Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA.

Sepsis leads to an acute breakdown of muscle to support increased caloric and amino acid requirements. Little is known about the role of adipose and muscle tissue breakdown and intestinal metabolism in glucose substrate supply during the acute phase of sepsis. In a translational porcine model of sepsis, we explored the across organ net fluxes of gluconeogenic substrates.

View Article and Find Full Text PDF

The use of antibiotics is the preferred therapy for bacterial diseases. However, overusing antibiotics has led to the development of antibiotic resistance in bacteria, which is now a major public health concern. Therefore, in this study, the performance of lysozyme (LYZ)/tracheal antimicrobial peptide (TAP)-based tissue-specific expression antimicrobial plasmids (TSEAP) have been evaluated in the treatment of mastitis in mice.

View Article and Find Full Text PDF

Bacterial keratitis caused by is indeed a serious concern due to its potential to cause blindness and its resistance to antibiotics, partly attributed to biofilm formation and cytotoxicity to the cornea. The present study uses a meta-analysis of a transcriptomics dataset to identify important genes and pathways in biofilm formation of induced keratitis. By combining data from several studies, meta-analysis can enhance statistical power and robustness, enabling the identification of 83 differentially expressed candidate genes, including fis that could serve as therapeutic targets.

View Article and Find Full Text PDF

, an opportunistic pathogen, commonly causes hospital-acquired pneumonia. Royal jelly fatty acids (RJFAs), a mixture of various fatty acids extracted from royal jelly, exhibit antibacterial and anti-inflammatory properties in treating many infectious diseases. Nevertheless, the therapeutic mechanisms of RJFAs in treatment of acute pulmonary infection are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!