Differentiated embryo chondrocyte-2 (DEC2), also known as bHLHE41 or Sharp1, is a pleiotropic transcription repressor that controls the expression of genes involved in cellular differentiation, hypoxia responses, apoptosis, and circadian rhythm regulation. Although a previous study demonstrated that DEC2 participates in the circadian control of hepatic metabolism by regulating the expression of cytochrome P450, the molecular mechanism is not fully understood. We reported previously that brief exposure of HepG2 cells to 50% serum resulted in 24-h oscillation in the expression of CYP3A4 as well as circadian clock genes. In this study, we found that the expression of CYP2D6, a major drug-metabolizing enzyme in humans, also exhibited a significant oscillation in serum-shocked HepG2 cells. DEC2 interacted with CCAAT/enhancer-binding protein (C/EBPα), accompanied by formation of a complex with histone deacetylase-1, which suppressed the transcriptional activity of C/EBPα to induce the expression of CYP2D6. The oscillation in the protein levels of DEC2 in serum-shocked HepG2 cells was nearly antiphase to that in the mRNA levels of CYP2D6. Transfection of cells with small interfering RNA against DEC2 decreased the amplitude of CYP2D6 mRNA oscillation in serum-shocked cells. These results suggest that DEC2 periodically represses the promoter activity of CYP2D6, resulting in its circadian expression in serum-shocked cells. DEC2 seems to constitute a molecular link through which output components from the circadian clock are associated with the time-dependent expression of hepatic drug-metabolizing enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.111.076406DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
16
expression cyp2d6
12
serum-shocked hepg2
12
cells dec2
12
differentiated embryo
8
embryo chondrocyte-2
8
ccaat/enhancer-binding protein
8
expression
8
circadian expression
8
circadian clock
8

Similar Publications

Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma.

Cell Biol Toxicol

January 2025

Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.

Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.

View Article and Find Full Text PDF

Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.

View Article and Find Full Text PDF

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.

View Article and Find Full Text PDF

A 3D Cell-Culture System That Uses Nano-Fibrillated Bacterial Cellulose to Prepare a Spherical Formulation of Culture Cells.

Biol Pharm Bull

January 2025

Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.

A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!