Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To understand the substitution effects of 4-(pyridin-2-yl)pyrimidine (pprd) on the coordination reaction equilibria, the interactions between a series of the pprd-like ligands and [OV(O(2))(2)(H(2)O)](-) or [OV(O(2))(2)(HOD)](-) or [OV(O(2))(2)(D(2)O)](-) (bpV) have been explored by a combination of multinuclear ((1)H, (13)C, and (51)V) magnetic resonance, heteronuclear single quantum coherence (HSQC) and variable temperature NMR in a 0.15 mol L(-1) NaCl D(2)O solution that mimics physiological conditions. The direct NMR data are reported for the first time. Competitive coordination interactions result in a series of new hepta-coordinated peroxidovanadate species [OV(O(2))(2)LL'](-) (LL' = pprd-like chelating ligands). The equilibrium constants for the products between bpV and the pprd-like ligands show that the relative affinity of the ligands is pprd ≈ 2-NH(2)-pprd > 2-Me-pprd > 2-Et-pprd > 4-(6-methylpyridin-2-yl)pyrimidine (abbr. 6'-Me-pprd). When the ligand is pprd, a pair of isomers (Isomer A and B) are observed in aqueous solution, which are attributed to the different types of coordination modes between the metal and the ligands, while the crystal structure of NH(4)[OV(O(2))(2)(pprd)]·2H(2)O has the same coordination structure as Isomer A. For substituted pprd ligands, however, only one type of structure (Isomer A or B ) is observed in solution. These results demonstrate that, when the aromatic ring has a substitution group, both the steric effect (from the alkyl) and hydrogen bonding (from the amine) can affect the coordination reaction equilibrium to prevent the appearance of either Isomer B in solution for the ligands 2-Me-pprd, 2-NH(2)-pprd, 2-Et-pprd, or Isomer A in solution for 6'-Me-pprd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt12334g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!