An effective anion sensor, [Ru(II)(bpy)(2)(H(2)L(-))](+) (1(+)), based on a redox and photoactive {Ru(II)(bpy)(2)} moiety and a new ligand (H(3)L = 5-(1H-benzo[d]imidazol-2-yl)-1H-imidazole-4-carboxylic acid), has been developed for selective recognition of fluoride (F(-)) and acetate (OAc(-)) ions. Crystal structures of the free ligand, H(3)L and [1](ClO(4)) reveal the existence of strong intramolecular and intermolecular hydrogen bonding interactions. The structure of [1](ClO(4)) shows that the benzimidazole N-H of H(2)L(-) is hydrogen bonded with the pendant carboxylate oxygen while the imidazole N-H remains free for possible hydrogen bonding interaction with the anions. The potential anion sensing features of 1(+) have been studied by different experimental and theoretical (DFT) investigations using a wide variety of anions, such as F(-), Cl(-), Br(-), I(-), HSO(4)(-), H(2)PO(4)(-), OAc(-) and SCN(-). Cyclic voltammetry and differential pulse voltammetry established that 1(+) is an excellent electrochemical sensor for the selective recognition of F(-) and OAc(-) anions. 1(+) is also found to be a selective colorimetric sensor for F(-) or OAc(-) anions where the MLCT band of the receptor at 498 nm is red shifted to 538 nm in the presence of one equivalent of F(-) or OAc(-) with a distinct change in colour from reddish-orange to pink. The binding constant between 1(+) and F(-) or OAc(-) has been determined to be logK = 7.61 or 7.88, respectively, based on spectrophotometric titration in CH(3)CN. The quenching of the emission band of 1(+) at 716 nm (λ(ex) = 440 nm, Φ = 0.01 at 298 K in CH(3)CN) in the presence of one equivalent of F(-) or OAc(-), as well as two distinct lifetimes of the quenched and unquenched forms of the receptor 1(+), makes it also a suitable fluorescence-based sensor. All the above experiments, in combination with (1)H NMR, suggest the formation of a 1:1 adduct between the receptor (1(+)) and the anion (F(-) or OAc(-)). The formation of 1:1 adduct {[1(+)·F(-)] or [1(+)·OAc(-)]} has been further evidenced by in situ ESI-MS(+) in CH(3)CN. Though the receptor, 1(+), is comprised of two N-H protons associated with the coordinated H(2)L(-) ligand, only the free imidazole N-H proton participates in the hydrogen bonding interactions with the incoming anions, while the intramolecularly hydrogen bonded benzimidazole N-H proton remains intact as evidenced by the crystal structure of the final product (1). The hydrogen bond mediated anion sensing mechanism, over the direct deprotonation pathway, in 1(+) has been further justified by a DFT study and subsequent NBO analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2dt12126cDOI Listing

Publication Analysis

Top Keywords

selective recognition
12
hydrogen bonding
12
recognition fluoride
8
fluoride acetate
8
experimental theoretical
8
ligand h3l
8
oac-
8
bonding interactions
8
benzimidazole n-h
8
hydrogen bonded
8

Similar Publications

Emerging biosensing platforms based on metal-organic frameworks (MOFs) for detection of exosomes as diagnostic cancer biomarkers: case study for the role of the MOFs.

J Mater Chem B

January 2025

Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.

Exosomes, which are considered nanoscale extracellular vesicles (EVs), are secreted by various cell types and widely distributed in different biological fluids. They consist of multifarious bioactive molecules and use systematic circulation for their transfer to adjoining cells. This phenomenon enables exosomes to take part in intercellular and intracellular communications.

View Article and Find Full Text PDF

Exploring host-guest interactions to regulate hydrogen-bonding assembly offers a promising approach for developing advanced porous crystal materials (PCMs). However, screening compatible guests with appropriate geometries and host-guest interactions that could inhibit the dense packing of building blocks remains a primary challenge. This study presents a novel guest-induced crystallization (GIC) strategy, guided by thermodynamic calculations, to develop porous hydrogen-bonded organic frameworks (HOFs) using structurally challenging tetrazole building units.

View Article and Find Full Text PDF

Water and ion transport in nanochannels is crucial for membrane-based technology in biological systems. 2D materials, especially graphene oxide (GO), the most frequently used as the starting material, are ideal building blocks for developing synthetic membranes. However, the selective exclusion of small ions while maintaining in a pressured filtration process remains a challenge for GO membranes.

View Article and Find Full Text PDF

Recent Applications of Pillararene-Inspired Water-Soluble Hosts.

Chemistry

January 2025

Shanghai University, Chemistry, 99 Shang-da Road, 200444, Shanghai, CHINA.

Pillararenes and their derivatives have emerged in supramolecular chemistry as unique macrocycles for applications in host-guest chemistry, materials science and biomimetics. Many variations have been conceived and synthesized in recent years and in this review, we relate progress in water-soluble versions: leaning towerarenes, extended-pillararenes, biphenarenes, helicarenes and octopusarenes. These are applied in targeted drug delivery, selective uptake and release of aromatic guests, fabrication of gold/silver and mesoporous silica nanoparticles, cell imaging, pollutant separation, biomedicine (e.

View Article and Find Full Text PDF

Introduction: Tetanus, caused by , poses a life-threatening risk by affecting the nervous system and inducing muscle tightness. The objective of this study is to examine the knowledge, attitudes, and behaviors of non-medical university students regarding the tetanus vaccine in the context of post-road accidents.

Methods: A descriptive cross-sectional study was conducted in 2023, involving 378 students from non-medical disciplines, primarily from information technology, business administration, and engineering faculties, with a mean age of 20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!