High-resolution, comprehensive structural information is often the final arbiter between competing mechanistic models of biological processes, and can serve as inspiration for new hypotheses. In molecular biology, definitive structural data at atomic resolution are available for many macromolecules; however, information about the structure of the brain is much less complete, both in scope and resolution. Several technical developments over the past decade, such as serial block-face electron microscopy and trans-synaptic viral tracing, have made the structural biology of neural circuits conceivable: we may be able to obtain the structural information needed to reconstruct the network of cellular connections for large parts of, or even an entire, mouse brain within a decade or so. Given that the brain's algorithms are ultimately encoded by this network, knowing where all of these connections are should, at the very least, provide the data needed to distinguish between models of neural computation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrn3169DOI Listing

Publication Analysis

Top Keywords

neural computation
8
structural
5
structural neurobiology
4
neurobiology missing
4
missing link
4
link mechanistic
4
mechanistic understanding
4
understanding neural
4
computation high-resolution
4
high-resolution comprehensive
4

Similar Publications

Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models.

Nat Commun

January 2025

Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.

Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation.

View Article and Find Full Text PDF

Two algorithms for improving model-based diagnosis using multiple observations and deep learning.

Neural Netw

January 2025

College of Computer Science and Technology, Jilin University, Changchun, 130012, China; Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, 130012, China. Electronic address:

Model-based diagnosis (MBD) is a critical problem in artificial intelligence. Recent advancements have made it possible to address this challenge using methods like deep learning. However, current approaches that use deep learning for MBD often struggle with accuracy and computation time due to the limited diagnostic information provided by a single observation.

View Article and Find Full Text PDF

CPJN: News recommendation with a content and popularity joint network.

Neural Netw

January 2025

School of Information Management and Engineering, Shanghai University of Finance and Economics, 200433 Shanghai, PR China. Electronic address:

Users may click on a news because they are interested in its content or because the news contains important information and is very popular. Modeling these two aspects is crucial for accurate news recommendation. Most existing studies focused on capturing users' preferences towards news content, and thus they are limited in investigating in depth users' preferences towards news popularity and independently capturing user content and popularity preferences.

View Article and Find Full Text PDF

Organic fertilizers have been identified as a sustainable agricultural practice that can enhance productivity and reduce environmental impact. Recently, the European Union defined and accepted insect frass as an innovative and emerging organic fertilizer. In the wider domain of organic fertilizers, mathematical and computational models have been developed to optimize their production and application conditions.

View Article and Find Full Text PDF

Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!