C. elegans has proven to be a valuable model system for the discovery and functional characterization of many genes and gene pathways. More sophisticated tools and resources for studies in this system are facilitating continued discovery of genes with more subtle phenotypes or roles. Here we present a generalized protocol we adapted for identifying C. elegans genes with postembryonic phenotypes of interest using RNAi. This procedure is easily modified to assay the phenotype of choice, whether by light or fluorescence optics on a dissecting or compound microscope. This screening protocol capitalizes on the physical assets of the organism and molecular tools the C. elegans research community has produced. As an example, we demonstrate the use of an integrated transgene that expresses a fluorescent product in an RNAi screen to identify genes required for the normal localization of this product in late stage larvae and adults. First, we used a commercially available genomic RNAi library with full-length cDNA inserts. This library facilitates the rapid identification of multiple candidates by RNAi reduction of the candidate gene product. Second, we generated an integrated transgene that expresses our fluorecently tagged protein of interest in an RNAi-sensitive background. Third, by exposing hatched animals to RNAi, this screen permits identification of gene products that have a vital embryonic role that would otherwise mask a post-embryonic role in regulating the protein of interest. Lastly, this screen uses a compound microscope equipped for single cell resolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399496 | PMC |
http://dx.doi.org/10.3791/3442 | DOI Listing |
Front Neurosci
January 2025
Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States.
Introduction: , a protein kinase located on human chromosome 21, plays a role in postembryonic neuronal development and degeneration. Alterations to have been consistently associated with cognitive functioning and neurodevelopmental disorders (e.g.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, University of Washington, Seattle, WA 98195-1800 USA.
Essential genes, estimated at approximately 20% of the genome, are broadly expressed and required for reproductive success. They are difficult to study, as interfering with their function leads to premature death. Transcription is one of the essential functions of life, and the multi-protein Mediator complex coordinates the regulation of gene expression at nearly every eukaryotic promoter.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Biology Department, Boston College, Chestnut Hill, MA, USA.
Thyroid hormone (TH) is an endocrine factor with a diverse array of developmental, metamorphic, and metabolic functions conserved across vertebrates. Zebrafish (Danio rerio) are a tractable model for endocrinology research, and recent research efforts focus on the roles of TH in zebrafish morphogenesis, growth and behavior. Several powerful approaches have been developed in zebrafish to modulate the TH axis and peripheral sensitivity to the hormone.
View Article and Find Full Text PDFElife
November 2024
Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
The spatial and temporal linear expression of genes establishes a regional code, which is crucial for the antero-posterior (A-P) patterning, segmentation, and neuronal circuit development of the hindbrain. RNF220, an E3 ubiquitin ligase, is widely involved in neural development via targeting of multiple substrates. Here, we found that the expression of genes in the pons was markedly up-regulated at the late developmental stage (post-embryonic day E15.
View Article and Find Full Text PDFPlant Physiol
November 2024
P2e, Université d'Orléans, INRAE, EA 1207 USC 1328, 45067 Orléans, France.
Embryogenesis is a brief but potentially critical phase in the tree life cycle for adaptive phenotypic plasticity. Using somatic embryogenesis in maritime pine (Pinus pinaster Ait.), we found that temperature during the maturation phase affects embryo development and post-embryonic tree growth for up to three years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!