Salinisphaera sp. P7-4 was isolated from the intestine of silver whiting, Sillago japonicas caught in the Pacific Ocean, and the esterase gene was cloned using the shotgun method. The amino acid sequence deduced from the nucleotide sequence (951 bp) corresponded to a protein of 316 amino acid residues with a molecular weight of 34,443. The esterase had 46 and 44% identities with the esterase enzymes of Ralstonia eutropha JMP134 and Rhodopseudomonas palustris HaA2, respectively. The primary structure of P7-4 esterase showed the conserved catalytic triad (Ser, Asp, His), consensus pentapeptide GXSXG, and oxyanion hole sequence (HG). The protein P7-4 was successfully expressed in Escherichia coli in a biologically active form. The enzyme showed high catalytic activity at low temperatures (5-25° C) with an activation energy of 2.18 kcal/mol. This result indicated that the esterase from Salinisphaera sp. P7-4 is a new cold-adapted enzyme. The enzyme preferentially hydrolyzed acyl-group chains with short chain lengths of ≤10 carbon. Metal ions such as Cd2(+), Co2(+), Cu2(+), Hg2(+), Ni2(+) and Zn2(+) inhibited enzymatic activity. Additionally, EDTA has no effect on its activity, whereas inhibition was observed with PMSF, a serine hydrolase inhibitor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2323/jgam.57.357 | DOI Listing |
Arch Biochem Biophys
March 2019
Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea. Electronic address:
In mammals, hormone sensitive lipase (EC 3.1.1.
View Article and Find Full Text PDFJ Gen Appl Microbiol
June 2012
Biotechnology Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-Ri, Busan, South Korea.
Salinisphaera sp. P7-4 was isolated from the intestine of silver whiting, Sillago japonicas caught in the Pacific Ocean, and the esterase gene was cloned using the shotgun method. The amino acid sequence deduced from the nucleotide sequence (951 bp) corresponded to a protein of 316 amino acid residues with a molecular weight of 34,443.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!