The development of integrated photonics and lab-on-a-chip platforms for environmental and biomedical diagnostics demands ultraviolet electroluminescent materials with high mechanical, chemical and environmental stability and almost complete compatibility with existing silicon technology. Here we report the realization of fully inorganic ultraviolet light-emitting diodes emitting at 390 nm with a maximum external quantum efficiency of ~0.3%, based on SnO(2) nanoparticles embedded in SiO(2) thin films obtained from a solution-processed method. The fabrication involves a single deposition step onto a silicon wafer followed by a thermal treatment in a controlled atmosphere. The fully inorganic architecture ensures superior mechanical robustness and optimal chemical stability in organic solvents and aqueous solutions. The versatility of the fabrication process broadens the possibility of optimizing this strategy and extending it to other nanostructured systems for designed applications, such as active components of wearable health monitors or biomedical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms1683 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!