A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Left-right asymmetries of behaviour and nervous system in invertebrates. | LitMetric

Evidence of left-right asymmetries in invertebrates has begun to emerge, suggesting that lateralization of the nervous system may be a feature of simpler brains as well as more complex ones. A variety of studies have revealed sensory and motor asymmetries in behaviour, as well as asymmetries in the nervous system, in invertebrates. Asymmetries in behaviour are apparent in olfaction (antennal asymmetries) and in vision (preferential use of the left or right visual hemifield during activities such as foraging or escape from predators) in animals as different as bees, fruitflies, cockroaches, octopuses, locusts, ants, spiders, crabs, snails, water bugs and cuttlefish. Asymmetries of the nervous system include lateralized position of specific brain structures (e.g., in fruitflies and snails) and of specific neurons (e.g., in nematodes). As in vertebrates, lateralization can occur both at the individual and at the population-level in invertebrates. Theoretical models have been developed supporting the hypothesis that the alignment of the direction of behavioural and brain asymmetries at the population-level could have arisen as a result of social selective pressures, when individually asymmetrical organisms had to coordinate with each other. The evidence reviewed suggests that lateralization at the population-level may be more likely to occur in social species among invertebrates, as well as vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neubiorev.2012.02.006DOI Listing

Publication Analysis

Top Keywords

nervous system
16
asymmetries behaviour
12
left-right asymmetries
8
system invertebrates
8
asymmetries nervous
8
asymmetries
7
invertebrates
5
nervous
4
behaviour nervous
4
system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!