Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low conductivity. Here, we compare the mechanics of the conducting para-terminated 4,4'-di(methylthio)stilbene and moderately conducting 1,2-bis(4-(methylthio)phenyl)ethane to that of insulating meta-terminated 3,3'-di(methylthio)stilbene single-molecule junctions. We simultaneously measure force and conductance across single-molecule junctions and use force signatures to obtain independent evidence of junction formation and rupture in the meta-linked cross-conjugated molecule even when no clear low-bias conductance is measured. By separately quantifying conductance and mechanics, we identify the formation of atypical 3,3'-di(methylthio)stilbene molecular junctions that are mechanically stable but electronically decoupled. While theoretical studies have envisaged many plausible systems where quantum interference might be observed, our experiments provide the first direct quantitative study of the interplay between contact mechanics and the distinctively quantum mechanical nature of electronic transport in single-molecule junctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl2045815 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China.
Amines are one of the most ubiquitous functional groups in molecular junctions; however, the exact regulation of the charge transport through the protonation state of an amine group in the junction backbone remains elusive. We address this question here by designing a diphenylamine molecular backbone and experimentally investigating how protonation of the central amine group affects the charge transport. Our ultraviolet-visible spectroscopy measurements demonstrate the protonation reaction of the diphenylamine compound in the presence of either trifluoroacetic acid or HCl, and we observe a consistent trend of a modestly increased conductance for diphenylamine in the presence of acid, indicating that a protonated amine group in a diphenylamine backbone slightly enhances the electron conduction.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.
Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Biochemistry and Molecular Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA.
The human genome contains numerous repetitive nucleotide sequences that display a propensity to fold into non-canonical DNA structures including G-quadruplexes (G4s). G4s have both positive and negative impacts on various aspects of nucleic acid metabolism including DNA replication, DNA repair and RNA transcription. Poly (ADP-ribose) polymerase (PARP1), an important anticancer drug target, has been recently shown to bind a subset of G4s, and to undergo auto-PARylation.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA. Electronic address:
The rapid turnover of branched actin networks underlies key in vivo processes such as lamellipodial extension, endocytosis, phagocytosis, and intracellular transport. However, our understanding of the mechanisms used to dissociate, or 'prune', branched filaments has remained limited. Glia maturation factor (GMF) is a cofilin family protein that binds to Arp2/3 complex and catalyzes branch dissociation.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India.
Predictive approaches and rules to connect and combine molecular circuit components are required to realize the potential of molecular electronics and develop miniaturized integrated circuits. To this end, we have recently demonstrated a bis(terpyridine)-based molecular breadboard with four conductance states formed by the superposition of five 2-5 ring circuits. Here, we develop a generic analytical/statistical model to describe break-junction data and use it to extract the conductance of the five embedded circuits in the bis-terpyridine-based molecular breadboard junction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!