Effective as statin drugs or acids are inhibitors mevinic limiting enzyme in cholesterol biosynthesis, 3-hydroxy- 3-methyl-glutaryl coenzyme A-3-hydroxy-3-reductase (HMGR), an enzyme responsible for the reduction the double methyl-glutaryl coenzyme A. These compounds promoted the synthesis and evaluation of new inhibitors of HMGR, called HMGRIs. The high number of potential candidates need to create models of quantitative structure-activity relationship in order to guide the HMGRI (3-hydroxy-3-methyl-glutarylcoenzyme A inhibitor) synthesis. In this work, we revised different computational studies for a very large and heterogeneous series of HMGRIs. First, we revised QSAR studies with conceptual parameters how flexibility of rotation, probability of availability, etc; Next, using method of regression analysis; and QSAR studies in order to understand the essential structural requirement for binding with receptor. Next, we review 3D QSAR, CoMFA and CoMSIA with different compound to find out the structural requirements for 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitory activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/156802612800166729 | DOI Listing |
Drug Des Devel Ther
January 2025
Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.
Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mathematics, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan.
Chemical structures may be defined based on their topology, which allows for the organization of molecules and the representation of new structures with specific properties. We use topological indices, which are precise numerical measurements independent of structure, to measure the bonding arrangement of a chemical network. An essential objective of studying topological indices is to collect and alter chemical structure data to develop a mathematical relationship between structures and physico-chemical properties, bio-activities, and associated experimental factors.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
Carbonless DNA was designed by replacing all carbon atoms in the standard DNA building blocks with boron and nitrogen, ensuring isoelectronicity. Electronic structure quantum chemistry methods (DFT(ωB97XD)/aug-cc-pVDZ) were employed to study both the individual building blocks and the larger carbon-free DNA fragments. The reliability of the results was validated by comparing selected structures and binding energies using more accurate methods such as MP2, CCSD, and SAPT2+3(CCD)δ.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.
In recent years, machine learning has gained substantial attention for its ability to predict complex chemical and biological properties, including those of pharmaceutical compounds. This study proposes a machine learning-based quantitative structure-property relationship (QSPR) model for predicting the physicochemical properties of anti-arrhythmia drugs using topological descriptors. Anti-arrhythmic drug development is challenging due to the complex relationship between chemical structure and drug efficacy.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China.
In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!