The predictive power of using in vitro systems in combination with physiologically based pharmacokinetic (PBPK) modeling to elucidate the relative importance of metabolism and carrier-mediated transport for the pharmacokinetics was evaluated using repaglinide as a model compound and pig as the test system. Repaglinide was chosen as model drug as previous studies in humans have shown that repaglinide is subject to both carrier-mediated influx to the liver cells and extensive hepatic metabolism. A multiple sampling site model in pig was chosen since it provides detailed in vivo information about the liver disposition. The underlying assumption was that both metabolism and carrier-mediated transport are also important for the hepatic disposition of repaglinide in pigs. Microsomes and primary hepatocytes were used for in vitro evaluation of enzyme kinetics and cellular disposition, respectively. In vitro data were generated both with and without metabolism inhibitors (ketoconazole, bezafibrate and trimethoprim) and transport inhibitors (diclofenac and quinine) providing input into a semi-PBPK model. In vivo data were also generated with and without the same enzyme and transporter inhibitors, alone and in combination. The pigs were given repaglinide as intravenous infusions with and without inhibitors in a sequential manner, i.e., a control phase and a test phase. Parameters describing the passive and carrier-mediated flux as well as metabolism were estimated in the control phase. The result from test phase was used to gain further knowledge of the findings from the control phase. The in vivo pig model enabled simultaneous sampling from plasma (pre- and postliver and peripheral) as well as from bile and urine. A semi-PBPK model consisting of 11 compartments (6 tissues + 5 sampling sites) was constructed for the mechanistic elucidation of the liver disposition, in vitro based in vivo predictions, sensitivity analyses and estimations of individual pharmacokinetic parameters. Both in vitro and in vivo results showed that carrier-mediated influx was important for the liver disposition. The in vivo findings were supported by the result from the test phase where hepatic clearance (4.3 mL min⁻¹ kg⁻¹) was decreased by 29% (metabolism inhibition), 43% (transport inhibition) and 57% (metabolism + transport inhibition). These effects were in good agreement with predicted levels. This study suggests that both metabolism and carrier-mediated uptake are of significant importance for the liver disposition of repaglinide in pigs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp200218pDOI Listing

Publication Analysis

Top Keywords

liver disposition
16
disposition repaglinide
12
repaglinide pigs
12
metabolism carrier-mediated
12
control phase
12
test phase
12
metabolism
9
hepatic disposition
8
metabolism transport
8
carrier-mediated transport
8

Similar Publications

Background: Weekend hospital discharges are often associated with reduced staffing, potentially impacting the quality of patient care. We studied the effects of weekend discharge after liver transplantation (LT) on early readmission rates, overall survival (OS), and graft survival (GS).

Method: We analyzed data from the Ohio State University Wexner Medical Center database (January 2016 to December 2023).

View Article and Find Full Text PDF

Meta-Analysis of the Input and Disposition of Various Dosage Forms of Methylprednisolone in Healthy Subjects Utilizing a Physiologically Based Pharmacokinetic Model.

AAPS J

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 160 Hayes Rd, Buffalo, New York, 14214, USA.

The study quantitatively analyzes and compares the pharmacokinetics (PK) of methylprednisolone (MPL) in humans upon administration of various dosage forms. The PK parameters and profiles of MPL in healthy subjects were collected from 22 literature sources. A minimal physiologically based pharmacokinetic (mPBPK) model consisting of blood and two tissue (lumped liver and kidney, remainder) compartments with nonlinear tissue partitioning was applied to describe MPL disposition.

View Article and Find Full Text PDF

Feasibility of digital phenotyping based on continuous glucose monitoring to support personalized lifestyle medicine in type 2 diabetes.

Maturitas

December 2024

Unit Healthy Living and Work, Netherlands Organization for Applied Scientific research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands; Department of Internal Medicine, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands. Electronic address:

Objectives: Type 2 diabetes is a highly prevalent age-related chronic condition, with complex and heterogeneous pathogenesis. A 5-point oral glucose tolerance test can identify type 2 diabetes subtypes or "diabetypes" based on the degree of insulin resistance in muscle and/or liver, and beta-cell dysfunction. Due to its costly and invasive nature, the oral glucose tolerance test is not scalable.

View Article and Find Full Text PDF

Objective: Clinical decision instruments (CDIs) could be useful to aid risk stratification and disposition of emergency department (ED) patients with cirrhosis. Our primary objective was to derive and internally validate a novel Cirrhosis Risk Instrument for Stratifying Post-Emergency department mortality (CRISPE) for the outcomes of 14- and 30-day post-ED mortality. Secondarily, we externally validated the existing Model for End-Stage Liver Disease (MELD) scores for explicit use in ED patients and prediction of the same outcomes.

View Article and Find Full Text PDF

Objective: The objective of this study was to determine the apparent intrinsic clearance (Cl) and fraction unbound in human liver microsomes (f) of 86 marketed central nervous system (CNS) drugs and to predict the in vivo hepatic blood clearance (CL).

Methods: Cl in human liver microsomes (HLM) was determined by substrate depletion, and f was determined by equilibrium dialysis. The relationship between lipophilicity (logP) and unbound intrinsic clearance (Cl) was explored using the Biopharmaceutical Drug Disposition Classification System (BDDCS) and Extended Clearance Classification System (ECCS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!