Polycomb-group (PcG) proteins form the multiprotein polycomb repressive complexes (PRC) 1 and 2, and function as transcriptional repressors through histone modifications. They maintain the proliferative capacity of hematopoietic stem and progenitor cells by repressing the transcription of tumor suppressor genes, namely Ink4a and Arf, and thus have been characterized as oncogenes. However, the identification of inactivating mutations in the PcG gene, EZH2, unveiled a tumor suppressor function in myeloid malignancies, including primary myelofibrosis (PMF). Here, we show that loss of another PcG gene, Bmi1, causes pathological hematopoiesis similar to PMF. In a mouse model, loss of Bmi1 in Ink4a-Arf(-/-) hematopoietic cells induced abnormal megakaryocytopoiesis accompanied by marked extramedullary hematopoiesis, which eventually resulted in lethal myelofibrosis. Absence of Bmi1 caused derepression of a cohort of genes, including Hmga2, which is an oncogene overexpressed in PMF. Chromatin immunoprecipitation assays revealed that Bmi1 directly represses the transcription of Hmga2. Overexpression of Hmga2 in hematopoietic stem cells induced a myeloproliferative state with enhanced megakaryocytopoiesis in mice, implicating Hmga2 in the development of pathological hematopoiesis in the absence of Bmi1. Our findings provide the first genetic evidence of a tumor suppressor function of Bmi1 and uncover the role of PcG proteins in restricting growth by silencing oncogenes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3302226PMC
http://dx.doi.org/10.1084/jem.20111709DOI Listing

Publication Analysis

Top Keywords

tumor suppressor
16
suppressor function
12
lethal myelofibrosis
8
hematopoietic cells
8
pcg proteins
8
hematopoietic stem
8
pcg gene
8
pathological hematopoiesis
8
cells induced
8
absence bmi1
8

Similar Publications

The tumor suppressor PALB2 is a key player in the Homologous Recombination (HR) pathway, functionally connecting BRCA proteins at the DNA damage site. PALB2 forms homodimers via its coiled-coil domain, and during HR, it forms a heterodimeric complex with BRCA1 using the same domain. However, the structural details of the human PALB2 coiled-coil domain are unknown.

View Article and Find Full Text PDF

Tumor microenvironment in oral squamous cell carcinoma.

Front Immunol

January 2025

Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China.

Oral squamous cell carcinoma (OSCC) is a highly aggressive and malignant tumor of oral cavity with a poor prognosis and high mortality due to the limitations of existing therapies. The significant role of tumor microenvironment (TME) in the initiation, development, and progression of OSCC has been widely recognized. Various cells in TME, including tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), T lymphocytes, tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs), form a complicated and important cellular network to modulate OSCC proliferation, invasion, migration, and angiogenesis by secreting RNAs, proteins, cytokines, and metabolites.

View Article and Find Full Text PDF

Background: Radical cystectomy (RC) combined with pelvic lymph node dissection (PLND) is the standard treatment for muscle-invasive bladder cancer (MIBC). For metastatic MIBC patients, platinum-based chemotherapy remains the first choice treatment. However, approximately 50% of patients with metastatic MIBC are ineligible for platinum-based adjuvant chemotherapy because of impaired renal function.

View Article and Find Full Text PDF

Identification of the oncogenic role and clinical implication of in Colon Adenocarcinoma.

J Cancer

January 2025

Department of Oncology, Geriatric Medical Center, Wuxi Second Geriatric Hospital, Wuxi Huishan Second People's Hospital, Wuxi, 214174, Jiangsu, China.

Colorectal carcinoma (CRC) is a highly prevalent and life-threatening disease with multi-stage progression, characterized by diverse molecular expression patterns at distinct stages, making treatment particularly challenging. Early detection and diagnosis of CRC are vital and can greatly benefit from the discovery of effective biomarkers. Researchers have identified novel gene signatures that play pivotal roles in specific CRC types or stages.

View Article and Find Full Text PDF

Insights into Structure and Function of Growth Arrest Specific 2 (GAS2).

J Cancer

January 2025

Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.

Growth arrest specific 2 (GAS2) is a microfilament-associated protein, which is widely distributed in human tissues. It exerts a pivotal influence on various cellular processes, including cytoskeletal regulation, cell cycle progression, apoptosis, and senescence. GAS2 has a dual function in cancer cell growth: on the one hand, it enhances the sensitivity of cancer cells to chemoradiotherapy and prevents malignant transformation of normal cells; but on the other hand, it maintains the growth of cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!