The E-Screen assay was used to evaluate the estrogenicity of sugar beet by-products obtained from a dairy farm experiencing low success rates of embryo transfer. The beet tailings had ~3-fold the estradiol equivalents of the pelleted beet pulp (3.9 and 1.2 μg estradiol equivalents or E(2)Eq/kg dry matter, respectively). Whole sugar beets, sugar beet pellets, and shreds from several Midwest US locations were also evaluated by E-Screen. All pellets examined were found to have some estrogenic activity (range ~0.1-2.0 μg E(2)Eq/kg DM) with a mean of 0.46 μg/kg dry matter and median of 0.28 μg/kg dry matter. Relative E(2)Eq ranked as follows: pellets > shreds > most unprocessed roots. Using recommended feeding levels and conservative absorption estimates (10%), the estrogenic activity in the original samples could result in blood estradiol equivalents ≥ those found at estrus (10 pg/mL, cows). Chemical analyses revealed no known phytoestrogens, but the estrogenic mycotoxin, zearalenone, was found in 15 of 21 samples. Of significance to those using the E-Screen are our findings that contradict previous reports: ß-sitosterol has no proliferative effect and genistein's glucuronidated form-genistin-is equal to genistein in proliferative effect. The latter is the result of deconjugation of genistin to genistein in the presence of fetal bovine serum (determined by LC MSMS). These data show the usefulness and caveats of the E-Screen in evaluation of feedstuffs, and indicate a potential for sugar beet by-products to contain zearalenone at concentrations that may impact reproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-012-9489-9DOI Listing

Publication Analysis

Top Keywords

sugar beet
16
estradiol equivalents
12
dry matter
12
e-screen evaluation
8
embryo transfer
8
beet by-products
8
pellets shreds
8
estrogenic activity
8
μg/kg dry
8
beet
6

Similar Publications

The utilization of exogenous fiber-degrading enzymes in commercial swine diets is a strategy to increase the nutrient and energy density of poorly digestible ingredients. In a prior set of studies, dietary multienzyme blend (MEblend) supplementation increased the apparent total tract digestibility (ATTD) of nutrients, non-starch polysaccharides, and energy in complete high-fibrous gestation diets by 6% when fed to gestating sows. The current study aimed to determine the effects of MEblend (containing xylanase, β-glucanase, cellulase, amylase, protease, pectinase, and invertase activities) supplementation on ATTD of energy and nutrients of individual feedstuffs commonly used in gestating sow diets across major pork-producing regions worldwide, which differ in their fibrous components.

View Article and Find Full Text PDF

Introduction: Weeds are a major factor affecting crop yield and quality. Accurate identification and localization of crops and weeds are essential for achieving automated weed management in precision agriculture, especially given the challenges in recognition accuracy and real-time processing in complex field environments. To address this issue, this paper proposes an efficient crop-weed segmentation model based on an improved UNet architecture and attention mechanisms to enhance both recognition accuracy and processing speed.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!