Target delivery and controlled release of the chemopreventive drug sulindac that possesses low water solubility present a great challenge for its pharmaceutical industry. Here, we offered an advanced nanomatrix formulation system of sulindac based on layered double hydroxide materials. The X-ray analysis and infrared spectroscopy confirmed the incorporation of sulindac into the gallery of the layered double hydroxides. The incorporation ratios of sulindac were recorded to be 45, 31 and 20 for coprecipitation, anion-exchange and reconstruction techniques, respectively. The scanning electron microscopy showed a nanomatrix-structure of ~50 nm. The release studies of sulindac-nanomatrix showed a 96% controlled release at the small intestine solution during 3 h(s), indicating an enhancement in the dissolution profile of sulindac after the matrix formation. The layered structure of the matrix supplied sulindac with a well-ordered structure and a relatively hydrophobic microenvironment that controlled the guest hydrolysis and reactivity during the release process. The laminar structure of layered double hydroxides offered a safe preservation for sulindac against photodecarboxylation, and enhanced the drug thermal stability from 190 to 230° C. The ionic electrostatic interaction of sulindac through its acidic group with layered double hydroxides demolished the gastrointestinal ulceration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-012-4566-xDOI Listing

Publication Analysis

Top Keywords

layered double
20
controlled release
12
double hydroxides
12
sulindac
9
target delivery
8
delivery controlled
8
release chemopreventive
8
chemopreventive drug
8
drug sulindac
8
double hydroxide
8

Similar Publications

The paper addresses the economic operation optimization problem of photovoltaic charging-swapping-storage integrated stations (PCSSIS) in high-penetration distribution networks. It proposes a dual-layer optimization scheduling model for PCSSIS clusters and distribution network systems. Firstly, a master-slave game model is constructed.

View Article and Find Full Text PDF

Promoting defect formation and inhibiting hydrogen evolution by S-doping NiFe layered double hydroxide for electrocatalytic reduction of nitrate to ammonia.

Water Res

December 2024

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:

Activation of HO cleavage for H* production by defect engineering eliminates the insufficient supply of protons in the NORR process under neutral conditions. However, it remains challenging to precisely control the defect formation for optimizing the equilibrium between H* production and H* binding. Here, we propose a strategy to boost defect generation through S-doping induced NiFe-LDH lattice distortion, and successfully optimize the balance of H* production and binding.

View Article and Find Full Text PDF

Measuring Attractive Interaction between a Self-Electrophoretic Micromotor and a Wall.

Phys Rev Lett

December 2024

School of Physics and Astronomy, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China.

Chemically driven micromotors exhibit a pronounced affinity for nearby surfaces, yet the quantification of this motor-wall interaction strength remains unexplored in experiments. Here, we apply an external force to a self-electrophoretic micromotor which slides along a wall and measures the force necessary to disengage the motor from the wall. Our experiments unveil that the required disengaging force increases with the strength of chemical driving, often surpassing both the motor's effective gravity and its propulsive thrust.

View Article and Find Full Text PDF

Contrasting Responses of Smoke Dispersion and Fire Emissions to Aerosol-Radiation Interaction during the Largest Australian Wildfires in 2019-2020.

Environ Sci Technol

January 2025

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.

The record-breaking 2019-2020 Australian wildfires have been primarily linked to climate change and its internal variability. However, the meteorological feedback mechanisms affecting smoke dispersion and wildfire emissions on a synoptic scale remain unclear. This study focused on the largest wildfires occurring between December 25, 2019 and January 10, 2020, under the enhanced subtropical high, when the double peak in wildfire evolution was favored by sustained low humidity and two synchronous increases in temperature and wind.

View Article and Find Full Text PDF

Emerging frontiers of nickel-aluminium layered double hydroxide heterojunctions for photocatalysis.

Dalton Trans

January 2025

National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The unique benefits of nickel-aluminium layered double hydroxide (Ni-Al LDH)-based heterojunctions, including large surface area, tunable bandgap and morphology, abundant reaction sites, and high activity, selectivity, and photostability, make them extremely promising for photocatalytic applications. Given the importance and benefits of Ni-Al LDH-based heterojunctions in photocatalysis, it is necessary to provide a summary of Ni-Al LDH-based heterojunctions for photocatalytic applications. Hence, in this review, we thoroughly described the material design for Ni-Al LDH-based heterojunctions, along with their recent developments in various photocatalytic applications, , H evolution, CO reduction, and pollutant removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!