In this study, several different carriers were employed in a Phanerochaete chrysosporium BVH-F-1767 cell immobilization study. Polystyrene foam was shown to be the optimum carrier material from organism biomass measurements and maximum MnP production (915.62 U L(-1)). The maximum MnP activity of polystyrene foam system was achieved 2-5 days sooner than with the other carrier systems studied. It was thus clear that the polystyrene foam approach shortened the culture cycle. Analysis of the carrier mechanisms employed in this study revealed that polystyrene foam had larger internal spaces and a greater surface area, and thus the potential to enhance the transfer efficiency of oxygen and nutrients to the fungus and accelerate its growth. The mycelia of the fungus were able to associate closely with the unique internal pore structure of the polystyrene foam, providing a more quiescent microenvironment and helping to maintain the stability of the cultivation system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-012-0704-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!