The prokaryotic community in Fe-As co-precipitation product from a groundwater storage tank in Bangladesh was investigated over a 5-year period to assess the diversity of the community and to infer biogeochemical mechanisms that may contribute to the formation and stabilisation of co-precipitation products and to Fe and As redox cycling. Partial 16S rRNA gene sequences from Bacteria and Archaea, functional markers (mcrA and dsrB) and iron-oxidising Gallionella-related 16S rRNA gene sequences were determined using denaturing gradient gel electrophoresis (DGGE). Additionally, a bacterial 16S rRNA gene library was also constructed from one representative sample. Biogeochemical characterization demonstrated that co-precipitation products consist of a mixture of inorganic minerals, mainly hydrous ferric oxides, intimately associated with organic matter of microbial origin that contribute to the chemical and physical stabilisation of a poorly ordered structure. DGGE analysis and polymerase chain reaction-cloning revealed that the diverse bacterial community structure in the co-precipitation product progressively stabilised with time resulting in a prevalence of methylotrophic Betaproteobacteria, while the archaeal community was less diverse and was dominated by members of the Euryarchaeota. Results show that Fe-As co-precipitation products provide a habitat characterised by anoxic/oxic niches that supports a phylogenetically and metabolically diverse group of prokaryotes involved in metal, sulphur and carbon cycling, supported by the presence of Gallionella-like iron-oxidizers, methanogens, methylotrophs, and sulphate reducers. However, no phylotypes known to be directly involved in As(V) respiration or As(III) oxidation were found.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-012-0014-1DOI Listing

Publication Analysis

Top Keywords

co-precipitation products
16
16s rrna
12
rrna gene
12
groundwater storage
8
fe-as co-precipitation
8
co-precipitation product
8
gene sequences
8
co-precipitation
6
community
5
dynamic microbial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!