Understanding the identity of lineage-specific cells arising during manipulations of stem cells is necessary for developing their potential applications. For instance, replacement of crucial functions in organ failure by transplantation of suitable stem-cell-derived cells will be applicable to numerous disorders, but requires insights into the origin, function and fate of specific cell populations. We studied mechanisms by which the identity of differentiated cells arising from stem cells could be verified in the context of natural liver-specific stem cells and whether such differentiated cells could be effective for supporting the liver following cell therapy in a mouse model of drug-induced acute liver failure. By comparing the identity of naturally occurring fetal human liver stem cells, we found that cells arising in cultures of human embryonic stem cells (hESCs) recapitulated an early fetal stage of liver cells, which was characterized by conjoint meso-endoderm properties. Despite this fetal stage, hESC-derived cells could provide liver support with appropriate metabolic and ammonia-fixation functions, as well as cytoprotection, such that mice were rescued from acute liver failure. Therefore, spontaneous or induced differentiation of human embryonic stem cells along the hepatic endoderm will require transition through fetal-like stages. This offers opportunities to prospectively identify whether suitable cells have been generated through manipulation of stem cells for cell therapy and other applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324584 | PMC |
http://dx.doi.org/10.1242/jcs.095372 | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFBackground: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.
Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.
Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFBackground: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Alzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!