A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LC-MS/MS identification of the principal in vitro and in vivo phase I metabolites of the novel thiosemicarbazone anti-cancer drug, Bp4eT. | LitMetric

AI Article Synopsis

  • The study identifies the iron chelator Bp4eT as a promising anti-cancer compound within its chemical series, showing strong anti-proliferative effects and a selective action mechanism.
  • Researchers used liquid chromatography mass spectrometry (LC-MS/MS) to analyze the metabolism of Bp4eT in both rat and human liver microsomes, identifying two main metabolites resulting from its oxidation.
  • The findings will help in developing methods to measure Bp4eT and its metabolites in biological samples and in planning pharmacokinetic studies to assess the potential effects of these metabolites on the drug's efficacy and safety.

Article Abstract

The iron chelator, 2-benzoylpyridine-4-ethyl-3-thiosemicarbazone (Bp4eT), was identified as a lead compound of the 2-benzoylpyridine thiosemicarbazone series, which were designed as potential anti-cancer agents. This ligand has been shown to possess potent anti-proliferative activity with a highly selective mechanism of action. However, further progress in the development of this compound requires data regarding its metabolism in mammals. The aim of this study was to identify the main in vitro and in vivo phase I metabolites of Bp4eT using liquid chromatography tandem mass spectrometry (LC-MS/MS). Two metabolites were detected after incubation of this drug with rat and human liver microsomal fractions. Based on LC-MS(n) analysis, the metabolites were demonstrated to be 2-benzoylpyridine-4-ethyl-3-semicarbazone and N (3)-ethyl-N (1)-[phenyl(pyridin-2-yl)methylene]formamidrazone, with both resulting from the oxidation of the thiocarbonyl group. The identity of these metabolites was further shown by LC-MS/MS analysis of these latter compounds which were prepared by oxidation of Bp4eT with hydrogen peroxide and their structures confirmed by nuclear magnetic resonance and infrared spectra. Both the semicarbazone and the amidrazone metabolites were detected in plasma, urine, and feces after i.v. administration of Bp4eT to rats. In addition, another metabolite that could correspond to hydroxylated amidrazone was found in vivo. Thus, oxidative pathways play a major role in the phase I metabolism of this promising anti-tumor agent. The outcomes of this study will be further utilized for: (1) the development and validation of the analytical method for the quantification of Bp4eT and its metabolites in biological materials; (2) to design pharmacokinetic experiments; and to (3) evaluate the potential contribution of the individual metabolites to the pharmacodynamics/toxico-dynamics of this novel anti-proliferative agent.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-012-5766-4DOI Listing

Publication Analysis

Top Keywords

vitro vivo
8
vivo phase
8
metabolites
8
phase metabolites
8
metabolites detected
8
bp4et
6
lc-ms/ms identification
4
identification principal
4
principal vitro
4
metabolites novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!