Cancer imaging: Gene transcription-based imaging and therapeutic systems.

Int J Biochem Cell Biol

Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.

Published: May 2012

Molecular-genetic imaging of cancer is in its infancy. Over the past decade gene reporter systems have been optimized in preclinical models and some have found their way into the clinic. The search is on to find the best combination of gene delivery vehicle and reporter imaging system that can be translated safely and quickly. The goal is to have a combination that can detect a wide variety of cancers with high sensitivity and specificity in a way that rivals the current clinical standard, positron emission tomography with [(18)F]fluorodeoxyglucose. To do so will require systemic delivery of reporter genes for the detection of micrometastases, and a nontoxic vector, whether viral or based on nanotechnology, to gain widespread acceptance by the oncology community. Merger of molecular-genetic imaging with gene therapy, a strategy that has been employed in the past, will likely be necessary for such imaging to reach widespread clinical use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324783PMC
http://dx.doi.org/10.1016/j.biocel.2012.02.001DOI Listing

Publication Analysis

Top Keywords

imaging gene
8
molecular-genetic imaging
8
imaging
5
cancer imaging
4
gene
4
gene transcription-based
4
transcription-based imaging
4
imaging therapeutic
4
therapeutic systems
4
systems molecular-genetic
4

Similar Publications

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.

CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.

View Article and Find Full Text PDF

Postoperative ileus, the temporary cessation of gastrointestinal motility leading to accumulation of fluid and gas in the bowel, is a common complication following posterior spine fusion (PSF) in patients with neuromuscular scoliosis (NMS). Abdominal radiographs (KUBs) are often ordered to differentiate between ileus and mechanical obstruction but expose patients to radiation, add cost, and may lead to unnecessary work up. The aim of this study was to determine how often KUBs led to a change in treatment after PSF in patients with NMS.

View Article and Find Full Text PDF

Background: Conditions associated with pathogenic (PVs) or likely pathogenic variants (LPVs) are often severe. The early detection of carrier status is ideal, as it provides options for effective case management.

Materials And Methods: The study involved 58 patients with a personal and familial history of breast cancer (BC) who underwent genetic testing at the Regional Centre for Medical Genetics Dolj over a three-year period.

View Article and Find Full Text PDF

Tracking Chaperone-Mediated Autophagy Flux with a pH-Resistant Fluorescent Reporter.

Int J Mol Sci

December 2024

Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China.

Chaperone-mediated autophagy (CMA) is a selective autophagic pathway responsible for degrading cytoplasmic proteins within lysosomes. Monitoring CMA flux is essential for understanding its functions and molecular mechanisms but remains technically complex and challenging. In this study, we developed a pH-resistant probe, KFERQ-Gamillus, by screening various green fluorescent proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!