Ziprasidone, commercially available as Geodon capsules, is an atypical antipsychotic used in the treatment of schizophrenia and bipolar disorder. It is a BCS Class II drug that shows up to a 2-fold increase in absorption in the presence of food. Because compliance is a major issue in this patient population, we developed and characterized solubilized formulations of ziprasidone in an effort to improve absorption in the fasted state, thereby resulting in a reduced food effect. Three formulations utilizing solubilization technologies were studied: (1) an amorphous inclusion complex of ziprasidone mesylate and a cyclodextrin, (2) a nanosuspension of crystalline ziprasidone free base, and (3) jet-milled ziprasidone HCl coated crystals made by spray drying (CCSD) the drug with hypromellose acetate succinate. The formulations were characterized by in vitro methods appropriate to each particular solubilization technology. These studies confirmed that ziprasidone mesylate - cyclodextrin was an amorphous inclusion complex with enhanced dissolution rates. The ziprasidone free base crystalline nanosuspension showed a mean particle size of 274 nm and a monomodal particle size distribution. In a membrane permeation test, the CCSD showed a 1.5-fold higher initial flux compared to crystalline ziprasidone HCl. The three formulations were administered to fasted beagle dogs and their pharmacokinetics compared to Geodon capsules administered in the fed state. The amorphous complex and the nanosuspension showed increased absorption in the fasted state, indicating that solubilized formulations of ziprasidone have the potential to reduce the food effect in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2012.02.004 | DOI Listing |
Int J Biol Macromol
May 2019
Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia.
Novel diethanolamine-grafted high-methoxyl pectin (DGP)-arabic gum (AG) modified montmorillonite (MMT) composites were developed for intragastric ziprasidone HCl (ZIP) delivery by combining floating and mucoadhesion mechanisms. The ZIP-loaded clay-biopolymer matrices were accomplished by ionotropic gelation protocol utilizing zinc acetate in the presence or absence of covalent crosslinker, glutaraldehyde (GA). Various formulations exhibited excellent drug entrapment efficiency (DEE, %) and sustained drug release profiles, which were influenced by the polymer-blend (DGP:AG) ratios, reinforcing filler (MMT) existence and crosslinking procedure.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2019
Nanjing Tech University, Nanjing, Jiangsu Province, China.
The purpose of this study was to research a novel combination of Plasdone-S630 and HPMCAS-HF as hot-melt carrier used in ziprasidone hydrochloride for enhanced oral bioavailability and dismissed food effect. Ziprasidone hydrochloride solid dispersion (ZH-SD) was prepared by hot-melt extrusion technique, and its optimized formulation was selected by the central composite design (CCD), which was characterized for powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FTIR), in vitro dissolution study, and stability study. Finally, the in vivo study in fasted/fed state was carried out in beagle dogs.
View Article and Find Full Text PDFEur J Pharm Biopharm
August 2018
School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Australia. Electronic address:
The synergistic effect of nanosizing and lipid-based drug delivery systems (LBDDS) was explored to enhance formulation drug loading levels and improve drug solubilisation in the gastrointestinal environment. A novel formulation combining drug nanocrystals and silica-lipid hybrid (SLH) microparticles as a solid-state LBDDS was developed for the challenging poorly water-soluble drug, ziprasidone. A ziprasidone nanosuspension was fabricated via high-pressure homogenisation, achieving a mean particle size of 280 nm.
View Article and Find Full Text PDFAAPS PharmSciTech
August 2015
Pharmaceutical Works Polpharma SA, Pelplinska 19, 83-200, Starogard Gdanski, Poland,
This work aims at increasing solubility and dissolution rate of ziprasidone free base-Biopharmaceutics Classifaction System (BCS) class II compound. The authors describe a practical approach to amorphization and highlight problems that may occur during the development of formulations containing amorphous ziprasidone, which was obtained by grinding in high-energy planetary ball mills or cryogenic mills. The release of ziprasidone free base from the developed formulations was compared to the reference drug product containing crystalline ziprasidone hydrochloride-Zeldox® hard gelatin capsules.
View Article and Find Full Text PDFObjective: The purpose of this work was to develop a controlled release of ziprasidone with no food effect by the osmotic release strategy.
Methods: The solution of ziprasidone and poloxamer188 (P188) with different weight ratios was spray-dried to form solid dispersion of ziprasidone (SD-ZIP). The SD-ZIP was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (X-RD) and solubility testing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!