The M1-family aminopeptidase PfA-M1 catalyzes the last step in the catabolism of human hemoglobin to amino acids in the Plasmodium falciparum food vacuole. In this study, the structural features of the substrate that promote efficient PfA-M1-catalyzed peptide bond hydrolysis were analyzed. X-Ala and Ala-X dipeptide substrates were employed to characterize the specificities of the enzyme's S1 and S1' subsites. Both subsites exhibited a preference for basic and hydrophobic sidechains over polar and acidic sidechains. The relative specificity of the S1 subsite was similar over the pH range 5.5-7.5. Substrate P1 and P1' residues affected both K(m) and k(cat), revealing that sidechain-subsite interactions not only drive the formation of the Michaelis complex but also influence the rates of ensuing chemical steps. Only a small fraction of the available binding energy was exploited in interactions between substrate sidechains and the S1 and S1' subsites, which indicates a modest level of complementarity. There was no correlation between S1 and S1' specificities and amino acid abundance in hemoglobin. Interactions between PfA-M1 and the backbone atoms of the P1' and P2' residues as well as the P2' sidechain further contributed to the catalytic efficiency of substrate hydrolysis. By demonstrating the engagement of multiple, broad-specificity subsites in PfA-M1, these studies provide insight into how this enzyme is able to efficiently generate amino acids from highly sequence-diverse di- and oligopeptides in the food vacuole.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307885PMC
http://dx.doi.org/10.1016/j.molbiopara.2012.02.003DOI Listing

Publication Analysis

Top Keywords

peptide bond
8
bond hydrolysis
8
m1-family aminopeptidase
8
plasmodium falciparum
8
amino acids
8
food vacuole
8
s1' subsites
8
subsites
5
engagement s1'
4
s1' s2'
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!