Development of a transient large strain contact method for biological heart valve simulations.

Comput Methods Biomech Biomed Engin

School of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.

Published: April 2013

A new 2D method to implement transient contact using Comsol Multiphysics (finite element analysis software that enables multiphysics simulations) is described, which is based on Hertzian contact. This method is compared to the existing (default) contact method that does not enable real transient simulations, but instead performs steady-state solutions where time is a constant. The two types of contact modelling have been applied to simple 2D biological heart valve models, undergoing strains in the region of 10% under 20 kPa pressure (applied over 0.3 s). Both the methods predicted comparable stress patterns, locations of peak stresses, deformations and directions of principal stress. The default contact method predicted slightly greater contact stresses, but spreads over a shorter surface length than the new contact method. The default contact method is useful for contact systems with little transient dependency, due to ease of use. However, where transient conditions are important the new contact method is preferred.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2011.623676DOI Listing

Publication Analysis

Top Keywords

contact method
28
default contact
12
contact
11
method
8
biological heart
8
heart valve
8
development transient
4
transient large
4
large strain
4
strain contact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!