A novel nonsense CDH3 mutation in hypotrichosis with juvenile macular dystrophy.

Int J Dermatol

Department of Dermatology Laboratory of Molecular Dermatology Department of Ophthalmology Rambam Health Care Campus Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.

Published: March 2012

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-4632.2011.04973.xDOI Listing

Publication Analysis

Top Keywords

novel nonsense
4
nonsense cdh3
4
cdh3 mutation
4
mutation hypotrichosis
4
hypotrichosis juvenile
4
juvenile macular
4
macular dystrophy
4
novel
1
cdh3
1
mutation
1

Similar Publications

Background: Mutations in the LARS2 gene are correlated with Perrault syndrome, a rare autosomal recessive genetic disorder, that is typically characterized by sensorineural hearing loss and ovarian insufficiency.

Methods: Whole-exome sequencing and mutational analysis were employed to identify hearing loss-causing genes in a Chinese family from the Guangxi Zhuang Autonomous Region. Clinical phenotypes, audiological data, and color Doppler ultrasound of the family were collected, and a series of computer software were used to analyze the impact of genetic variations on protein structure and function.

View Article and Find Full Text PDF

Adult-onset vanishing white matter disease due to a novel compound heterozygous EIF2B2 mutation: a case report and brief review.

Neurol Sci

January 2025

Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.

Background And Objectives: Vanishing white matter disease (VWMD) is an autosomal recessive leukoencephalopathy caused by mutations in the EIF2B1-5 genes, typically rare in adulthood. We present a case of adult-onset VWMD with a novel EIF2B2 mutation.

Methods: We collected the patient's clinical data, cerebrospinal fluid (CSF) results, laboratory tests, imaging features, genetic analysis, and follow-up data over a 4-year period.

View Article and Find Full Text PDF

Non-syndromic hearing loss (NSHL) is a genetically heterogeneous disorder accounting for almost 70% of the total congenital hearing loss. The implementation of rapid advanced sequencing methods has significantly contributed to the correct molecular diagnosis for several rare genetic disorders, including NHSL. Features of two probands with NHSL were clinically and genetically evaluated.

View Article and Find Full Text PDF

Zellweger syndrome; identification of mutations in and gene in Saudi families.

Ann Med

December 2025

Department of Basic Medical Sciences, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Medina, Saudi Arabia.

Background: Peroxisome biogenesis disorders (PBD) affect multiple organ systems. It is characterized by neurological dysfunction, hypotonia, ocular anomalies, craniofacial abnormalities, and absence of peroxisomes in fibroblasts. PBDs are associated with mutations in any of fourteen different genes, which are involved in peroxisome biogenesis.

View Article and Find Full Text PDF

Title: Identification of a novel GRHPR mutation in primary hyperoxaluria type 2 and establishment of patient-derived iPSC line.

Hum Cell

January 2025

Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.

This research delves into Primary Hyperoxaluria Type 2 (PH2), an autosomal recessive disorder precipitated by a unique case of compound heterozygous deleterious mutations in the GRHPR gene, specifically the intron2/3 c.214-2 T > G and the exon8 c.864-865delTG, leading to a premature stop codon at p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!