Insulin/IGF-1 signaling plays a pivotal role in the regulation of cellular homeostasis through its control of glucose metabolism as well as due to its effects on cell proliferation. Aberrant regulation of insulin signaling has been repeatedly implicated in uncontrolled cell growth and malignant transformations. TBC1D3 is a hominoid specific gene previously identified as an oncogene in breast and prostate cancers. Our efforts to identify the molecular mechanisms of TBC1D3-induced oncogenesis revealed the role of TBC1D3 in insulin/IGF-1 signaling pathway. We document here that TBC1D3 intensifies insulin/IGF-1-induced signal transduction through intricate, yet elegant fine-tuning of signaling mechanisms. We show that TBC1D3 expression substantially delayed ubiquitination and degradation of insulin receptor substrate-1 (IRS-1). This effect is achieved through suppression of serine phosphorylation at S636/639, S307 and S312 of IRS-1, which are key phosphorylation sites required for IRS-1 degradation. Furthermore, we report that the effect of TBC1D3 on IRS-1:S636/639 phosphorylation is mediated through TBC1D3-induced activation of protein phosphatase 2A (PP2A), followed by suppression of T389 phosphorylation on p70 S6 kinase (S6K). TBC1D3 specifically interacts with PP2A regulatory subunit B56γ, indicating that TBC1D3 and PP2A B56γ operate jointly to promote S6K:T389 dephosphorylation. These findings suggest that TBC1D3 plays an unanticipated and potentially unique role in the fine-tuning of insulin/IGF-1 signaling, while providing novel insights into the regulation of tumorigenesis by a hominoid-specific protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278430PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031225PLOS

Publication Analysis

Top Keywords

insulin/igf-1 signaling
12
tbc1d3
9
irs-1 degradation
8
insulin signaling
8
p70 kinase
8
signaling
6
tbc1d3 hominoid-specific
4
hominoid-specific gene
4
gene delays
4
irs-1
4

Similar Publications

The developmental theory of ageing proposes that age-specific decline in the force of natural selection results in suboptimal levels of gene expression in adulthood, leading to functional senescence. This theory explicitly predicts that optimising gene expression in adulthood can ameliorate functional senescence and improve fitness. Reduced insulin/IGF-1 signalling (rIIS) extends the reproductive lifespan of Caenorhabditis elegans at the cost of reduced reproduction.

View Article and Find Full Text PDF

Physical activity improves myocardial structure, function, and resilience via complex, incompletely defined mechanisms. We explored the effects of 1- to 2-wk swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two-week forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, < 0.

View Article and Find Full Text PDF

Acne vulgaris (AV) is a chronic inflammatory condition of the pilosebaceous units characterized by multiple immunologic, metabolic, hormonal, genetic, psycho-emotional dysfunctions, and skin microbiota dysbiosis. The latter is manifested by a decreased population (phylotypes, i.e.

View Article and Find Full Text PDF

Characterizing the Role of daf-16/C. elegans FOXO in Lifespan and Healthspan.

Methods Mol Biol

November 2024

Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, USA.

In Caenorhabditis elegans (C. elegans), there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple pathways, DAF-16 integrates these signals to result in changes in longevity, development, fat storage, stress resistance, innate immunity, and reproduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!