The radiological features of lobar and segmental liver atrophy and compensatory hypertrophy associated with biliary obstruction are important to recognise for diagnostic and therapeutic reasons. Atrophied lobes/segments reduce in volume and usually contain crowded dilated bile ducts extending close to the liver surface. There is often a "step" in the liver contour between the atrophied and non-atrophied parts. Hypertrophied right lobe or segments enlarge and show a prominently convex or "bulbous" visceral surface. The atrophied liver parenchyma may show lower attenuation on pre-contrast computed tomography (CT) and CT intravenous cholangiography (CT-IVC) and lower signal intensity on T1-weighted magnetic resonance imaging (MRI). Hilar biliary anatomical variants can have an impact on the patterns of lobar/segmental atrophy, as the cause of obstruction (e.g. cholangiocarcinoma) often commences in one branch, leading to atrophy in that drainage region before progressing to complete biliary obstruction and jaundice. Such variants are common and can result in unusual but explainable patterns of atrophy and hypertrophy. Examples of changes seen with and without hilar variants are presented that illustrate the radiological features of atrophy/hypertrophy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259339 | PMC |
http://dx.doi.org/10.1007/s13244-011-0100-9 | DOI Listing |
Curr Med Imaging
January 2025
Department of Radiology, Peking Union Medical College Hospital [PUMCH], Chinese Academy of Medical Sciences & Peking Union Medical College [CAMS & PUMC], China.
Aims To evaluate the utility of unenhanced spectral imaging, electron density (ED) and overlay electron density (OED) images for assessing pulmonary embolisms in patients with suspected or confirmed acute pulmonary embolism (APE). Background Multiple spectral images can be extrapolated from spectral detector CT (SDCT), ED and OED images. ED and OED images are highly sensitive to moisture-rich tissues.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.
Introduction: Greater white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) are seen with transactive response DNA-binding protein 43 (TDP-43) pathology in frontotemporal lobar degeneration (FTLD-TDP). WMH associations with TDP-43 pathology in Alzheimer's disease (AD-TDP) remain unclear.
Methods: A total of 157 participants from Mayo Clinic Rochester with autopsy-confirmed AD, known TDP-43 status, and antemortem fluid-attenuated inversion recovery (FLAIR) MRI were included.
Port J Card Thorac Vasc Surg
October 2024
Thoracic Surgery Department - Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Portugal.
Introduction: Segmental anatomical resections have been a subject of debate in recent years. There is increasing evidence that these procedures may offer some advantages in the treatment of early-stage lung cancer, with overall survival (OS) and disease-free survival (DFS) similar to those seen in lobar anatomical resections.
Materials And Methods: We conducted a retrospective analysis of patients who underwent segmentectomy at Santa Marta Hospital (HSM) between January 2018 and September 2022.
Cardiovasc Intervent Radiol
January 2025
Division of Interventional Radiology, Department of Radiology, Beth Israel Deaconess Medical Center, Boston, USA.
Purpose: To report outcomes in hepatocellular carcinoma (HCC) patients with lobar and segmental vascular invasion treated with resin Yttrium-90 transarterial radioembolization (Y90-TARE) with single-compartment MIRD (Medical Internal Radiation Dose) model.
Materials And Methods: This was a retrospective IRB approved study of patients with a diagnosis of HCC with vascular invasion undergoing resin Y90-TARE from 2014 to 2022 (n = 61). Patients with Body Surface Area dosimetry (n = 20), main portal vein invasion (n = 6) and patients with an ECOG of > 2 were excluded (n = 1) with a final cohort of 34 patients.
Eur Radiol Exp
January 2025
Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.
Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!