[Not Available].

Geochim Cosmochim Acta

Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse 12, A-8010 Graz, Austria.

Published: January 2012

In order to apply Sr/Ca and (44)Ca/(40)Ca fractionation during calcium carbonate (CaCO(3)) formation as a proxy to reconstruct paleo-environments, it is essential to evaluate the impact of various environmental factors. In this study, a CO(2) diffusion technique was used to crystallize inorganic calcite from aqueous solutions at different ionic strength/salinity by the addition of NaCl at 25 °C. Results show that the discrimination of Sr(2+) versus Ca(2+) during calcite formation is mainly controlled by precipitation rate (R in μmol/m(2)/h) and is weakly influenced by ionic strength/salinity. In analogy to Sr incorporation, (44)Ca/(40)Ca fractionation during precipitation of calcite is weakly influenced by ionic strength/salinity too. At 25 °C the calcium isotope fractionation between calcite and aqueous calcium ions (Δ(44/40)Ca(calcite-aq) = δ(44/40)Ca(calcite) - δ(44/40)Ca(aq)) correlates inversely to log R values for all experiments. In addition, an inverse relationship between Δ(44/40)Ca(calcite-aq) and log D(Sr), which is independent of temperature, precipitation rate, and aqueous (Sr/Ca)(aq) ratio, is not affected by ionic strength/salinity either. Considering the log D(Sr) and Δ(44/40)Ca(calcite-aq) relationship, Sr/Ca and δ(44/40)Ca(calcite) values of precipitated calcite can be used as an excellent multi-proxy approach to reconstruct environmental conditions (e.g., temperature, precipitation rate) of calcite growth and diagenetic alteration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280721PMC
http://dx.doi.org/10.1016/j.gca.2011.10.039DOI Listing

Publication Analysis

Top Keywords

ionic strength/salinity
16
precipitation rate
12
44ca/40ca fractionation
8
calcite aqueous
8
weakly influenced
8
influenced ionic
8
temperature precipitation
8
calcite
6
[not available]
4
available] order
4

Similar Publications

Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.

View Article and Find Full Text PDF

Interactive effects of salinity, redox, and colloids on greenhouse gas production and carbon mobility in coastal wetland soils.

PLoS One

January 2025

Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.

Coastal wetlands, including freshwater systems near large lakes, rapidly bury carbon, but less is known about how they transport carbon either to marine and lake environments or to the atmosphere as greenhouse gases (GHGs) such as carbon dioxide and methane. This study examines how GHG production and organic matter (OM) mobility in coastal wetland soils vary with the availability of oxygen and other terminal electron acceptors. We also evaluated how OM and redox-sensitive species varied across different size fractions: particulates (0.

View Article and Find Full Text PDF

In arid and semi-arid climates, native plants have developed unique strategies to survive challenging conditions. These adaptations often rely on molecular pathways that shape plant architecture to enhance their resilience. Date palms (Phoenix dactylifera) and mangroves (Avicennia marina) endure extreme heat and high salinity, yet the metabolic pathways underlying this resilience remain underexplored.

View Article and Find Full Text PDF

AozC, a zn(II)Cys transcription factor, negatively regulates salt tolerance in Aspergillus oryzae by controlling fatty acid biosynthesis.

Microb Cell Fact

January 2025

Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.

Background: In the soy sauce fermentation industry, Aspergillus oryzae (A. oryzae) plays an essential role and is frequently subjected to high salinity levels, which pose a significant osmotic stress. This environmental challenge necessitates the activation of stress response mechanisms within the fungus.

View Article and Find Full Text PDF

Background: Globally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!