Macrophages play critical roles in events ranging from host defense to obesity and cancer, where they infiltrate affected tissues and orchestrate immune responses in tandem with the remodeling of the extracellular matrix (ECM). Despite the dual roles played by macrophages in inflammation, the functions of macrophage-derived proteinases are typically relegated to tissue-invasive or -degradative events. Here we report that the membrane-tethered matrix metalloenzyme MT1-MMP not only serves as an ECM-directed proteinase, but unexpectedly controls inflammatory gene responses wherein MT1-MMP(-/-) macrophages mount exaggerated chemokine and cytokine responses to immune stimuli both in vitro and in vivo. MT1-MMP modulates inflammatory responses in a protease-independent fashion in tandem with its trafficking to the nuclear compartment, where it triggers the expression and activation of a phosphoinositide 3-kinase δ (PI3Kδ)/Akt/GSK3β signaling cascade. In turn, MT1-MMP-dependent PI3Kδ activation regulates the immunoregulatory Mi-2/NuRD nucleosome remodeling complex that is responsible for controlling macrophage immune response. These findings identify a novel role for nuclear MT1-MMP as a previously unsuspected transactivator of signaling networks central to macrophage immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289887 | PMC |
http://dx.doi.org/10.1101/gad.178749.111 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305.
Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD).
View Article and Find Full Text PDFBrain metastasis (BM) is a poor prognostic factor in cancer patients. Despite showing efficacy in many extracranial tumors, immunotherapy with anti-PD-1 monoclonal antibody (mAb) or anti-CTLA-4 mAb appears to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti-PD-1 and anti-CTLA-4 mAbs has a potent antitumor effect on BM, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Honghuagang District, Guizhou, China.
With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.
Purpose Of Review: This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system.
Recent Findings: Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections.
Discov Oncol
January 2025
Graduate School of Qinghai University, Xining, 810000, Qinghai Province, People's Republic of China.
The occurrence and progression of breast cancer (BCa) are complex processes involving multiple factors and multiple steps. The tumor microenvironment (TME) plays an important role in this process, but the functions of immune components and stromal components in the TME require further elucidation. In this study, we obtained the RNA-seq data of 1086 patients from The Cancer Genome Atlas (TCGA) database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!