A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A translation inhibitor identified in a Drosophila screen enhances the effect of ionizing radiation and taxol in mammalian models of cancer. | LitMetric

We described previously a screening protocol in Drosophila melanogaster that allows us to identify small molecules that increase the killing effect of ionizing radiation in vivo in a multicellular context. The ability of this screen to identify agents that enhance the effect of radiation in human cancer models has been validated in published proof-of-concept studies. Here we describe an agent, identified by screening through two National Cancer Institute (NCI) small molecule libraries in Drosophila, that increases the effect of radiation. This agent, Bouvardin (NSC 259968), inhibits the elongation step of protein synthesis. We find that Bouvardin enhances the killing effect of X-rays in both Drosophila larvae and in human cancer cells. More detailed analysis showed that Bouvardin also increases the effect of radiation in clonogenic assays and in human cancer xenografts in mice. Finally, we present data that Bouvardin can also increase the efficacy of taxol. Regulation of translation is important to cancer biology. Current therapies target every aspect of cancer cell proliferation from growth factor signaling to cell division, with the exception of translation elongation. Our identification of Bouvardin as an enhancer of radio- and chemo-therapeutic agents suggests that targeting this niche has the potential to improve existing cancer therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339828PMC
http://dx.doi.org/10.1242/dmm.008722DOI Listing

Publication Analysis

Top Keywords

human cancer
12
ionizing radiation
8
cancer
8
increases radiation
8
radiation
5
bouvardin
5
translation inhibitor
4
inhibitor identified
4
drosophila
4
identified drosophila
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!