Cell migration and invasion are largely dependent on the complex organization of the various cytoskeletal components. Whereas the role of actin filaments and microtubules in cell motility is well established, the role of intermediate filaments in this process is incompletely understood. Organization and structure of the keratin cytoskeleton, which consists of heteropolymers of at least one type 1 and one type 2 intermediate filament, are in part regulated by post-translational modifications. In particular, phosphorylation events influence the properties of the keratin network. Sphingosylphosphorylcholine (SPC) is a bioactive lipid with the exceptional ability to change the organization of the keratin cytoskeleton, leading to reorganization of keratin filaments, increased elasticity, and subsequently increased migration of epithelial tumor cells. Here we investigate the signaling pathways that mediate SPC-induced keratin reorganization and the role of keratin phosphorylation in this process. We establish that the MEK-ERK signaling cascade regulates both SPC-induced keratin phosphorylation and reorganization in human pancreatic and gastric cancer cells and identify Ser431 in keratin 8 as the crucial residue whose phosphorylation is required and sufficient to induce keratin reorganization and consequently enhanced migration of human epithelial tumor cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367938PMC
http://dx.doi.org/10.1242/jcs.080127DOI Listing

Publication Analysis

Top Keywords

keratin phosphorylation
12
keratin reorganization
12
epithelial tumor
12
tumor cells
12
keratin
11
migration epithelial
8
keratin cytoskeleton
8
spc-induced keratin
8
reorganization
5
phosphorylation regulates
4

Similar Publications

Backgrounds: Ultraviolet (UV) radiation-induced photoaging is a multifaceted biological process. Fruit acids have shown promise in combating photoaging. This study aims to investigate the mechanisms underlying the protective effects of fruit acids on UV-induced skin photoaging.

View Article and Find Full Text PDF

Purpose: Inflammation and apoptosis contribute to the development of dry eye disease (DED) and meibomian gland dysfunction (MGD). This study aimed to investigate the effect of caffeine on the ocular surface and tear inflammatory cytokines through clinical, in vivo, and in vitro experiments.

Methods: In the clinical study, comprehensive ophthalmic examinations of participants in the control and the caffeine groups were compared, including ocular surface and tears inflammatory cytokines.

View Article and Find Full Text PDF

Cytarabine chemotherapy induces meibomian gland dysfunction.

Ocul Surf

October 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China. Electronic address:

Purpose: Cytarabine (Ara-C) chemotherapy causes symptoms resembling meibomian gland dysfunction (MGD), suggesting potential associations between Ara-C and MGD. In this study, the pathological effects of Ara-C on MGD were investigated in a rodent model.

Methods: Mice received Ara-C with or without rosiglitazone (PPARγ agonist) for 7 consecutive days.

View Article and Find Full Text PDF

Substantial changes in energy metabolism are a hallmark of pancreatic cancer. To adapt to hypoxic and nutrient-deprived microenvironments, pancreatic cancer cells remodel their bioenergetics from oxidative phosphorylation to glycolysis. This bioenergetic shift makes mitochondria an Achilles' heel.

View Article and Find Full Text PDF

Thiols-rich peptide from water buffalo horn keratin alleviates oxidative stress and inflammation through co-regulating Nrf2/Hmox-1 and NF-κB signaling pathway.

Free Radic Biol Med

October 2024

National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China. Electronic address:

Water buffalo horn (WBH), a traditional Chinese medicine, is known for its antipyretic, anti-inflammatory and antioxidant properties. This study aims to investigate the therapeutic potential of WBH keratin (WBHK) and its derived thiol-rich peptide fractions (SHPF) for oxidative stress and inflammation. WBHK and SHPF were prepared and tested using various models including LPS-induced fever in rabbits, HO-induced oxidative damage in bEnd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!