Inflammation, oxidative stress, and platelet activation are involved in type 2 diabetes and its complications. Soluble CD36 (sCD36) has been proposed to early identify diabetics at risk of accelerated atherothrombosis. We aimed at characterizing the platelet contribution to sCD36 in diabetes, by correlating its concentration with the extent of platelet-mediated inflammation and in vivo lipid peroxidation and investigating the effects of low-dose aspirin on these processes. A cross-sectional comparison of sCD36, soluble CD40L (sCD40L) reflecting platelet-mediated inflammation, urinary 11-dehydro-TxB(2), and 8-iso-PGF(2α), in vivo markers of platelet activation and lipid peroxidation, was performed among 200 diabetic patients (94 of them on aspirin 100mg/day) and 47 healthy controls. sCD36 levels (median [IQR]: 0.72 [0.31-1.47] vs 0.26 [0.2-0.37], P=0.003) and urinary 11-dehydro-TxB(2) levels (666 [293-1336] vs 279 [160-396], P≤0.0001) were significantly higher in diabetic patients not on aspirin (n=106) than in healthy subjects. These variables were significantly lower in aspirin-treated diabetics than untreated patients (P<0.0001). Among patients not on aspirin, those with long-standing diabetes (>1 year) had significantly higher sCD36 levels in comparison to patients with diabetes duration <1 year (1.01 [0.62-1.86] vs 0.44 [0.22-1.21], P=0.001). sCD36 linearly correlated with sCD40L (rho=0.447; P=0.0001). On multiple regression analysis, 11-dehydro-TxB(2) (β=0.360; SEM=0.0001, P=0.001), 8-iso-PGF(2α) (β=0.469; SEM=0.0001, P<0.0001), and diabetes duration (β=0.244; SEM=0.207, P=0.017) independently predicted sCD36 levels. sCD36, platelet activation, inflammation, and oxidative stress are increased in type 2 diabetes. Future studies are needed to elucidate if the incomplete down-regulation of sCD36 by low-dose aspirin implies that sCD36 may be derived from tissues other than platelets or if additional antiplatelet strategies in diabetes are necessary to interrupt CD36-dependent platelet activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.012 | DOI Listing |
Pharmacol Ther
January 2025
Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Electronic address:
The purinergic P2Y receptors comprise eight G-coupled receptor (GPCR) subtypes already identified (P2Y, P2Y, P2Y, P2Y, P2Y, P2Y). P2Y receptor physiological agonists are extracellular purine and pyrimidine nucleotides such as ATP (Adenosine triphosphate), ADP (Adenosine diphosphate), UTP (Uridine triphosphate), UDP (Uridine diphosphate), and UDP-glucose. These receptors are expressed in almost all cells.
View Article and Find Full Text PDFThromb Haemost
January 2025
Department of Bioinformatics, Biocenter, University of Würzburg, Wurzburg, Germany.
Comprehensive characterization of platelets requires various functional assays and analysis techniques, including omics-disciplines, each requiring an individual aliquot of a given sample. Consequently, the sample material per assay is often highly limited rendering downscaling a prerequisite for effective sample exploitation. Here we present a transfer of our recently introduced 96-well-based proteomics workflow (PF96) into the 384-well format (PF384) allowing for a significant increase in sensitivity when processing minute platelet protein amounts.
View Article and Find Full Text PDFBlood Adv
January 2025
The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Cytoskeletal remodeling and mitochondrial bioenergetics play important roles in thrombocytopoiesis and platelet function. Recently, α-actinin-1 mutations have been reported in patients with congenital macrothrombocytopenia. However, the role and underlying mechanism of α-actinin-1 in thrombocytopoiesis and platelet function remain elusive.
View Article and Find Full Text PDFPlatelets
December 2025
Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA.
Platelet-like particles (PLPs), derived from megakaryocytic cell lines MEG-01 and K-562, are widely used as a surrogate to study platelet formation and function. We demonstrate by RNA-Seq that PLPs are transcriptionally distinct from platelets. Expression of key genes in signaling pathways promoting platelet activation/aggregation, such as the PI3K/AKT, protein kinase A, phospholipase C, and α-adrenergic and GP6 receptor pathways, was missing or under-expressed in PLPs.
View Article and Find Full Text PDFCurr Cardiol Rev
January 2025
Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation.
Platelets, tiny cell fragments measuring 2-4 μm in diameter without a nucleus, play a crucial role in blood clotting and maintaining vascular integrity. Abnormalities in platelets, whether genetic or acquired, are linked to bleeding disorders, increased risk of blood clots, and cardiovascular diseases. Advanced proteomic techniques offer profound insights into the roles of platelets in hemostasis and their involvement in processes such as inflammation, metastasis, and thrombosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!