Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75-100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutral pH-as observed by liposome content leakage and circular dichroism experiments-and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2012.02.006 | DOI Listing |
J Chem Theory Comput
September 2024
Department of Sociology, University of California, Irvine, California 92697, United States.
Protein aggregation can produce a wide range of states, ranging from fibrillar structures and oligomers to unstructured and semistructured gel phases. Recent work has shown that many of these states can be recapitulated by relatively simple, topological models specified in terms of multibody interaction energies, providing a direct connection between aggregate intermolecular forces and aggregation products. Here, we examine a low-dimensional network Hamiltonian model (NHM) based on four basic multibody interactions found in any aggregate system.
View Article and Find Full Text PDFBioengineering (Basel)
May 2024
Comprehensive Specialty Care, Edmond, OK 73034, USA.
Genipin polymers are self-forming tensile-load-carrying oligomers, derived from the gardenia fruit, that covalently bond to amines on collagen. The potential therapeutic mechanical benefits of a non-discrete in situ forming mesh of genipin oligomers for degraded spinal discs were first conceived in 1998. Over more than two decades, numerous studies have demonstrated the immediate mechanical effects of this injectable, intra-annular polymeric mesh including an early demonstration of an effect on clinical outcomes for chronic or recurrent discogenic low back pain.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
June 2023
Department of Biochemistry, SBBS, Queen Mary University of London UK.
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2024
Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
It is widely recognized that membranes can facilitate the aggregation of amyloid-β (Aβ) peptides, while Aβ can in turn cause membrane damage. Many studies focus on the peptide-membrane interactions of Aβ oligomers with β-rich structures. However, the exact aggregation and toxicity mechanism of the membrane-embedded helical Aβ oligomers remain ambiguous.
View Article and Find Full Text PDFNeurosci Lett
January 2024
Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan; Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan.
Metal ions participate in various biochemical processes such as electron transport chain, gene transcription, and enzymatic reactions. Furthermore, the aggregation promoting effect of several metal ions on neuronal proteins such as prion, tau, Aβ peptide, and α-synuclein, has been reported. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the detergent-resistant membrane microdomain fraction of the neuronal cell membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!