Purpose: We evaluated site-specific skeletal adaptation to loading during growth, comparing radius (RAD) and femoral neck (FN) DXA scans in young female gymnasts (GYM) and non-gymnasts (NON).
Methods: Subjects from an ongoing longitudinal study (8-26yr old) underwent annual DXA scans (proximal femur, forearm, total body) and anthropometry, completing maturity and physical activity questionnaires. This cross-sectional analysis used the most recent data meeting the following criteria: gynecological age ≤2.5yr post-menarche; and GYM annual mean gymnastic exposure ≥5.0h/wk in the prior year. Bone geometric and strength indices were derived from scans for 173 subjects (8-17yr old) via hip structural analysis (femoral narrow neck, NN) and similar radius formulae (1/3 and Ultradistal (UD)). Maturity was coded as M1 (Tanner I breast), M2 (pre-menarche, ≥Tanner II breast) or M3 (post-menarche). ANOVA and chi square compared descriptive data. Two factor ANCOVA adjusted for age, height, total body non-bone lean mass and percent body fat; significance was tested for main effects and interactions between gymnastic exposure and maturity.
Results: At the distal radius, GYM means were significantly greater than NON means for all variables (p<0.05). At the proximal femur, GYM exhibited narrower periosteal and endosteal dimensions, but greater indices of cortical thickness, BMC, aBMD and section modulus, with lower buckling ratio (p<0.05). However, significant interactions between maturity and loading were detected for the following: 1) FN bone mineral content (BMC) and NN buckling ratio (GYM BMC advantages only in M1 and M3; for BMC and buckling ratio, M1 advantages were greatest); 2) 1/3 radius BMC, width, endosteal diameter, cortical cross-sectional area, and section modulus (GYM advantages primarily post-menarche); and 3) UD radius BMC and axial compressive strength (GYM advantages were larger with greater maturity, greatest post-menarche).
Conclusions: Maturity-specific comparisons suggested site-specific skeletal adaptation to loading during growth, with greater advantages at the radius versus the proximal femur. At the radius, GYM advantages included greater bone width, cortical cross-sectional area and cortical thickness; in contrast, at the femoral neck, GYM bone tissue cross-sectional area and cortical thickness were greater, but bone width was narrower than in NON. Future longitudinal analyses will evaluate putative maturity-specific differences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340420 | PMC |
http://dx.doi.org/10.1016/j.bone.2012.01.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!