Enzymatic pretreatment of lignocellulosic wastes to improve biogas production.

Waste Manag

Institute of Fermentation Technology and Microbiology, Technical University of Lodz, Poland.

Published: June 2012

The effect of enzymatic pretreatment of sugar beet pulp and spent hops prior to methane fermentation was determined in this study. These industrial residues were subjected to enzymatic digestion before anaerobic fermentation because of high fiber content (of 85.1% dry matter (DM) and 57.7% DM in sugar beet pulp and spent hops, respectively). Their 24h hydrolysis with a mix of enzymatic preparations Celustar XL and Agropect pomace (3:1, v/v), with endoglucanase, xylanase and pectinase activities, was most effective. Reducing sugars concentrations in hydrolysates of sugar beet pulp and spent hops were by 88.9% and 59.4% higher compared to undigested materials. The highest yield of biogas was obtained from the enzymatic hydrolysate of sugar beet pulp (183.39 mL/d from 1g COD at fermenter loading with organic matter of 5.43 g COD/L × d). Fermentation of sugar beet pulp gave 19% less biogas. Methane fermentation of spent hops hydrolysate yielded 121.47 mL/d biogas from 1g COD (at 6.02 g COD/L × d, 13% more than from spent hops). These results provide evidence that suitable enzymatic pretreatment of lignocellulosic wastes improve biogas yield from anaerobic fermentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2012.01.016DOI Listing

Publication Analysis

Top Keywords

sugar beet
20
beet pulp
20
spent hops
20
enzymatic pretreatment
12
pulp spent
12
pretreatment lignocellulosic
8
lignocellulosic wastes
8
wastes improve
8
improve biogas
8
methane fermentation
8

Similar Publications

a β-proteobacterium, forms a nitrogen-fixing symbiosis with many species of the large legume genus as well as with common bean ( L.). are considered to have evolved nodulation independently from the well-studied α-proteobacteria symbionts of legumes.

View Article and Find Full Text PDF

Background: Cercospora leaf spot (CLS), caused by Cercospora beticola, is the most destructive foliar disease in sugar beet. CLS is conventionally controlled with fungicide, but the emergence of fungicide-resistant populations reinforces the importance of developing and cultivating resistant varieties. Understanding the dynamics of CLS in different varieties is hence essential for sustainable CLS management.

View Article and Find Full Text PDF

Synthesis and characterization of thermoplastic resin from sugar beet polysaccharides via one-step transesterification.

Carbohydr Polym

March 2025

Institute of Science and Engineering, Kanazawa University, Kakuma machi, Kanazawa 920 1192, Japan. Electronic address:

Lignocellulosic biomass-based plastics provide a sustainable alternative to petroleum-based plastics by converting agricultural by-products into value-added materials, promoting a circular economy. This study investigates the development of thermoplastics from sugar beet pulp (SBP), a by-product rich in cellulose and pectin. A one-pot direct transesterification process was used to fully substitute hydroxy groups in SBP with acyl chains of varying lengths (C2-C10), achieving up to 96 % substitution.

View Article and Find Full Text PDF

Introduction: Multidrug-resistant (MDR) bacteria like Proteus species have led to more prolonged hospitalizations, fewer care choices, higher treatment costs, and even death. The present study aims to evaluate the prevalence of MDR Proteus species in clinical samples and to suggest the best therapeutic options for the MDR Proteus species.

Methodology: Clinical samples were collected randomly from five hospitals in Golestan Province, Iran, from February 2017 to July 2019.

View Article and Find Full Text PDF

The first geospatial dataset of irrigated fields (2020-2024) in Vojvodina (Serbia).

Sci Data

January 2025

BioSense Institute - the Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, Serbia.

Irrigation is a cornerstone of global food security, enabling sustainable agricultural production and helping to ensure that food is available for people around the world, now and in the future. Mapping irrigated fields provides valuable information for sustainable water management, agricultural development, and environmental conservation efforts. However, the collection of high-quality training data, which is necessary for accurate irrigation mapping remains costly and labour-intensive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!