An in situ cross-linking hybrid hydrogel for controlled release of proteins.

Acta Biomater

Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Published: May 2012

There is a clear need for methods to provide a safe controlled release of therapeutic proteins, either to achieve and maintain high local protein concentrations, or for sustained systemic delivery. We have developed a protein delivery system that combines in situ cross-linkable polysaccharide hydrogels with gelatin. This formulation is injectable, easy to apply, and obviates the need for organic solvents or potentially toxic cross-linking agents in the formulation process. The cross-linked polysaccharides themselves (comprising hyaluronic acid, dextran and/or carboxymethylcellulose) provided prolonged release of fluorescently labeled albumin (FITC-albumin). The duration of release was markedly extended by the incorporation of gelatin into the formulation: FITC-albumin and interleukin-2 (IL-2) were released over the course of more than 3 weeks. The IL-2 maintained >70% activity throughout that time. Gelatin also accelerated the gelation time of the hydrogels, and reduced their swelling in phosphate-buffered saline. The composite hydrogel (dextran-carboxymethylcellulose-gelatin) showed minimal cytotoxicity in vitro, and benign tissue reaction after subcutaneous injection in rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314113PMC
http://dx.doi.org/10.1016/j.actbio.2012.01.028DOI Listing

Publication Analysis

Top Keywords

controlled release
8
gelatin formulation
8
situ cross-linking
4
cross-linking hybrid
4
hybrid hydrogel
4
hydrogel controlled
4
release
4
release proteins
4
proteins clear
4
clear methods
4

Similar Publications

Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.

View Article and Find Full Text PDF

Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method.

Int J Mol Sci

December 2024

Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.

View Article and Find Full Text PDF
Article Synopsis
  • A magnesium-aluminum layered double hydroxide (LDH) was created using a coprecipitation technique from a nitrate solution and transformed into a layered double oxide (LDO) after being heated to 450 °C.
  • During rehydration in a fluoride solution, the LDH's original structure was restored and fluoride ions were absorbed to maintain balance, a finding confirmed by energy-dispersive X-ray spectroscopy (EDS).
  • The study demonstrated that using ethanol during the rehydration process significantly increased fluoride incorporation, and the fluoride release pattern from the material revealed a rapid initial release followed by a slower, prolonged release.
View Article and Find Full Text PDF

Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, commercial acid systems in oilfields present problems such as the uncontrollable release effect, high costs, and significant pollution.

View Article and Find Full Text PDF

Fine-Tuning the Physicochemical Properties of Poly(lactic Acid) Nanoparticles for the Controlled Release of the BET Inhibitor JQ1: Influence of PVA Concentration.

Polymers (Basel)

January 2025

Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Unidad nanoDrug, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, 02071 Albacete, Albacete, Spain.

The compounds targeting the bromo and extra terminal domain proteins (BET), such as the JQ1, present potent anti-cancer activity in preclinical models, however, the application of JQ1 at the clinical level is limited by its short half-life, rapid clearance, and non-selective inhibition of BET family proteins, leading to off-target effects and resistance. To address these challenges, the optimization of JQ1 delivery has been accomplished through polylactide (PLA) nanoparticles. PLA derivatives with varying molecular weights were synthesized via ring-opening polymerization using a zinc-based initiator and characterized using thermogravimetric analysis, differential scanning calorimetry, and infrared spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!