There are many efforts in understanding the effects of nanoparticles on cell viability and metabolism, however, not much is known regarding the distinct molecular mechanisms of inflammation and cellular stress using low dosing concentrations. To address this gap in the literature, we utilized a novel experimental design that specifically probes the effects of a panel of commonly studied engineered nanomaterials along immunomodulatory pathways, including NF-κB. The panel of particles selected for this study included quantum dot nanocrystals, titanium dioxide, hydroxylated fullerenes, and silver nanoparticles. Cell viability, antioxidant activity, select messenger RNA, and protein modulation were studied in primary human dermal fibroblasts (HDF) and NF-κB knockdown HDF cells. Inflammatory and non-inflammatory immune responses were measured using protein and real-time PCR array analysis from HDF cells exposed to sub-lethal concentrations of nanoparticles. Differences in cellular response to nanoparticles in protein and antioxidant experiments were evident in NF-κB knockdown cells. The methods used in the study, along with the resultant data sets, serve as a potential model for studying the complex pathway-specific biochemical responses in cell and tissue systems associated with nanoparticle exposures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2012.01.022DOI Listing

Publication Analysis

Top Keywords

effects panel
8
human dermal
8
dermal fibroblasts
8
nanoparticles cell
8
cell viability
8
nf-κb knockdown
8
hdf cells
8
distinct immunomodulatory
4
immunomodulatory effects
4
panel nanomaterials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!